[1]李东波,赵 冬,华 军.碳原子辐照损伤后石墨烯拉伸力学性能的温度相关性研究[J].西安建筑科技大学学报:自然版,2016,48(03):454-458.[doi:10.15986/j.1006-7930.2016.03.025]
 LI Dongbo,ZHAO Dong,HUA Jun.Research on correlation of tensile mechanical properties of irradiated graphene by C atomss with temperature[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(03):454-458.[doi:10.15986/j.1006-7930.2016.03.025]
点击复制

碳原子辐照损伤后石墨烯拉伸力学性能的温度相关性研究()
分享到:

西安建筑科技大学学报:自然版[ISSN:1006-7930/CN:61-1295/TU]

卷:
48
期数:
2016年03期
页码:
454-458
栏目:
出版日期:
2016-06-28

文章信息/Info

Title:
Research on correlation of tensile mechanical properties of irradiated graphene by C atomss with temperature
文章编号:
1006-7930(2016)03-0454-05
作者:
李东波赵 冬华 军
( 西安建筑科技大学理学院,陕西 西安 710055 )
Author(s):
LI Dongbo ZHAO Dong HUA Jun
( School of Science, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China )
关键词:
辐照损伤石墨烯拉伸力学性能温度
Keywords:
irradiation damage graphene tensile mechanical properties temperature
分类号:
TB12;TP183
DOI:
10.15986/j.1006-7930.2016.03.025
文献标志码:
A
摘要:
针对碳原子辐照损伤后石墨烯拉伸力学性能的温度相关性问题,采用分子动力学方法,创建了碳原子辐照石墨烯以及辐照损伤后的拉伸数值模型,对比分析了辐照损伤后石墨烯的弹性模量、拉伸极限强度、极限应变等拉伸力学性能对温度的敏感性.结果表明,相对于完美石墨烯而言,辐照损伤后石墨烯拉伸力学性能对温度的变化更加敏感,随温度的升高,拉伸极限强度降幅最为明显,其次为极限拉伸应变,最后是弹性模量.
Abstract:
For the correlation problems of tensile mechanical properties of graphene irradiated by C atoms with temperature, irradiation and tensile numerical models of graphene are established by using molecular dynamics method. The sensitivity of elastic modulus, ultimate tensile strength and ultimate tensile strain to temperature are comparative ly analyzed. The results indicate that the irradiated graphene is more sensitive to the change of temperature than perfect graphene. What ’s more, with the rise of temperature, ultimate tensile strength decline is most obvious sensitive to the change of temperature, followed by the ultimate tensile strain, and the elastic modulus comes last.

参考文献/References:

[1] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Material, 2007, 6(3): 183-191.

[2] 韩同伟, 贺鹏飞. 石墨烯力学性能研究进展[J]. 力学进展, 2011, 41(3): 279-292.

HAN Tongwei, HE Pengfei. Research progress in the mechanical properties of graphene[J]. Advances In Mechanics, 2011, 41(3): 279-292.

[3] Brink J van den. Graphene: from strength to strength[J]. Nature Nanotechnology, 2007, 2(4): 199-201.

[4] NI Z H, BU H, ZOU M, et, al. Anisotropic mechanical properties of graphene sheets from molecular dynamics[J]. Physica B, 2010, 405: 1301-1306.

[5] XIAO J R, STANISZEWSKI J, GILLESPIE Jr J W. Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects[J]. Mater Sci Eng A, 2010, 527: 715-723.

[6] 韩同伟, 贺鹏飞, 王健, 等. 石墨烯拉伸力学性能温度相关性的数值模拟[J]. 同济大学学报(自然科学版), 2009, 37(12): 1638-1641.

HAN Tongweil, HE Pengfeil, WANG Jian, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single Graphene sheet[J]. Jounal of Tongji University(Natural Science), 2009, 37(12): 1638-1641.

[7] 黄凌燕, 韩强. 单层石墨烯温度效应的分子动力学模拟[J]. 中国科学: 物理学·力学·天文学, 2012, 42(3): 319-326.

HUANG Lingyan, HAN Qiang. Molecular dynamics simulation of temperature effect on mono-layer graphene sheets[J]. Scientia Siinica Physica, Mechanica & Astronomica, 2012, 42(3): 319-326.

[8] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. J Chem Phys, 2000, 112(14): 6472-86.

[9] TERSOFF J. New empirical approach for the structureand energy of covalent systems[J]. Phys Rev B, 1988, 37: 6991.

[10] ZIEGLER J F, BIERSACK J P, LITTMARK U. Stopping andranges of ions in matter[M]. New York: Pergamon, 1985.

[11] 梁力, 赵仕俊, 王宇钢, 等. 重粒子辐照下石墨烯力学性能的分子动力学研究[J]. 北京大学学报(自然科学版), 2013, 49(3): 365-370.

LIANG Li, ZHAO Shijun, WANG Yugang, et al. Atomistic simulation of mechanical properties of graphene under heavy ion irradiation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(3): 365-370.

[12] PEI Q X, ZHANG Y W, SHENOY V B. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene[J]. Carbon, 2010, 48(3): 898-904.

[13] SHENDEROVA O A, BRENNER D W, OMELTCHENKO A, et al. Atomistic modeling of the fracture of polycrystalline diamond[J]. Phys Rev B, 2000, 61(6): 3877-88.

相似文献/References:

[1]朱建新,丁曲,张秋阳,等.基于损伤的PHC桩单轴受拉动态本构模型研究[J].西安建筑科技大学学报:自然版,2011,43(01):13.[doi:DOI:10.15986/j.1006-7930.2011.01.018]
 ,,et al.Research on uniaxial tensile dynamic constitutive modelof PHC piles based on damage[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2011,43(03):13.[doi:DOI:10.15986/j.1006-7930.2011.01.018]
[2]惠宽堂1,沈艺超1,李 亮2.多重抗侧力钢-混凝土混合结构最优刚度比研究[J].西安建筑科技大学学报:自然版,2016,48(03):333.[doi:10.15986/j.1006-7930.2016.03.005]
 XI Kuantang,SHEN Yichao,LI Liang.Studies on the optimal stiffness ratios of multi-lateral resistant steel-concrete mixed structure[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(03):333.[doi:10.15986/j.1006-7930.2016.03.005]

备注/Memo

备注/Memo:
基金项目:陕西省工业科技攻关项目(2015GY141);省教育厅专项科研项目(15JK1400);西安建筑科技大学人才基金资助项目(RC1601)
收稿日期:2015-11-08 修改稿日期:2016-06-10
作者简介:李东波(1982-),男,博士,主要研究微纳米力学与多尺度数值模拟.E-mail: 94791682@qq.com
更新日期/Last Update: 2016-08-05