[1]王先铁,林麟珲,陈蜂梅,等.外张拉式自复位方钢管混凝土柱脚的受力性能和设计方法研究[J].西安建筑科技大学学报(自然科学版),2017,(06):812-820.840.[doi:10.15986/j.1006-7930.2017.06.007]
 WANG Xiantie,LIN Linhui,CHEN Fengmei,et al.Study on structural performance and design method of external tensioned type self-centering concrete filled square steel tubular column base[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,(06):812-820.840.[doi:10.15986/j.1006-7930.2017.06.007]
点击复制

外张拉式自复位方钢管混凝土柱脚的受力性能和设计方法研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2017年06期
页码:
812-820.840
栏目:
出版日期:
2017-12-31

文章信息/Info

Title:
Study on structural performance and design method of external tensioned type self-centering concrete filled square steel tubular column base
文章编号:
1006-7930(2017)06-0812-09
作者:
王先铁1林麟珲1陈蜂梅2张力1罗遥1郑江1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.中山市春兴建筑科技有限公司,广东 中山 528434)
Author(s):
WANG Xiantie1 LIN Linhui1 CHEN Fengmei2 ZHANG Li1 LUO Yao1 ZHENG Jiang1
(1. School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China; 2. Zhongshan Chunxing Construction Technology Co., Ltd, Zhongshan 528434, China)
关键词:
自复位方钢管混凝土柱脚外张拉受力性能设计方法
Keywords:
self-centering concrete filled square steel tubular column base external tensioned structural performance design method
分类号:
TU398
DOI:
10.15986/j.1006-7930.2017.06.007
文献标志码:
A
摘要:
基于空间铰接机制,提出了一种外张拉式自复位方钢管混凝土柱脚节点,对其进行了受力性能分析,提出了设计方法,并建立有限元模型进行验证.结果表明:外张拉式自复位方钢管混凝土柱脚节点能够实现铰接机制,满足结构的空间变形要求,并具有较好的自复位能力.其脱开弯矩与方钢管混凝土柱截面尺寸、柱子轴力及初始预应力大小有关.柱子转动过程中,自复位柱脚的抗弯能力由初始预应力、预应力筋拉力增量、柱子轴力及防屈曲钢板受拉产生的力提供.自复位柱脚的耗能集中于可更换的耗能构件,可实现震后的快速修复.
Abstract:
Based on spatial hinged mechanism, an external tensioned type self-centering concrete filled square steel tubular(CFSST) column base was put forward. The structural performance analysis and design method were conducted, and the results were validated using the finite element analysis. The results show that the external tensioned type self-centering column base meets the requirement of the spatial hinged mechanism and deformation, and has good capability of self-centering. The decompression moment is related to the CFSST column section size, column axial force and initial post-tensioned force. The flexural ability is produced by the initial post-tensioned force, the post-tensioned force increment due to the post-tensioned tendons elongation, column axial force and the tension of the buckling restrained steel plate. The energy dissipation is concentrated on the replaceable energy dissipation components, i.e. the buckling restrained steel plate, and the rapid repair can be realized after earthquake.

参考文献/References:

[1]潘振华, 潘鹏, 邱法维, 等. 具有自复位能力的钢结构体系研究[J]. 土木工程学报, 2010, 43(增刊1): 403-410. PAN Zhenhua, PAN Peng, QIU Fawei, et al. Analysis of self-centering steel structures′ development[J]. China Civil Engineering Journal, 2010, 43(S1): 403-410. [2]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范:GB50011-2010[S]. 北京: 中国建筑工业出版社, 2010. Ministry of Housing and Urban-Rural Development of the People′s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China. Code for seismic design of buildings: GB50011-2010[S]. Beijing: China Architecture and Building Press, 2010. [3]吕西林, 陈云, 毛苑君. 结构抗震设计的新概念-可恢复功能结构[J].同济大学学报(自然科学版), 2011, 39(7): 941-948. Lü Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University(Natural Science), 2011, 39 (7): 941-948. [4]周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9): 1-10. ZHOU Ying, Lü Xilin. State of the art on rocking and self-entering structures[J]. Journal of Building Structures, 2011, 32(9): 1-10. [5]韩建平, 王晓燕. 新型自复位钢结构体系研究进展[J]. 结构工程师, 2015,31(4): 222-232. HAN Jianping, WANG Xiaoyan. State-of-the-art of new self-centering steel structural systems[J]. Structural Engineers, 2015, 31(4): 222-232. [6]DANIEL Mal Bok Dowden. Resilient self-centering steel plate shear walls[D]. Buffalo: State University of New York at Buffalo, 2014:8-48. [7]HOSEOK Chi. Development of post-tensioned column base connection for self-centering seismic resistant steel frame[D].West Lafayette: Purdue University, 2009:20-22. [8]鲁亮, 江乐, 李鸿, 等. 柱端铰型受控摇摆式钢筋混凝土框架抗震性能的振动台试验研究[J]. 振动与冲击, 2016, 35(4): 193-198. LU Liang, JIANG Le, LI Hong, et al. Shaking table tests for seismic performance of a controllable rocking reinforced concrete frame with column-end-hinge joints[J]. Journal of Vibration and Shock, 2016, 35(4): 193-198. [9]魏宇翔, 李启才. 轴压比对自复位结构体系柱脚节点抗震性能的影响[J]. 苏州科技学院学报(工程技术版), 2013, 26(1): 38-41. WEI Yuxiang, LI Qicai. Influence of the axial compression ratio on the seismic performance column base connections for post-tensioned self-centering seismic resistant of steel frames[J]. Journal of Suzhou University of Science and Technology(Engineering and Technology), 2013, 26(1): 38-41. [10]吕西林, 崔晔, 刘兢兢. 自复位钢筋混凝土框架结构振动台试验研究[J]. 建筑结构学报, 2014, 35(1): 19-26. Lü Xilin, CUI Ye, LIU Jingjing. Shaking table test of a self-centering reinforced concrete frame[J]. Journal of Building Structures, 2014, 35(1): 19-26. [11]ANSI/AISC. Seismic provisions for structural steel buildings: 341-10[S]. Chicago, USA: American Institute of Steel Construction, 2010. [12]中国工程建设标准化协会. 矩形钢管混凝土结构技术规程:159:2004[S]. 北京: 中国计划出版社, 2004. China Association for Engineering Construction Standardization. Technical specification for concrete filled rectangular steel tubular structures: 159:2004[S]. Beijing: China Planning Press, 2004. [13]RICLES J M, SAUSE R, PENG S W, et al. Experimental evaluation of earthquake resistant posttensioned steel connections[J]. Journal of Structural Engineering, 2002, 128(7): 850- 859.

备注/Memo

备注/Memo:
收稿日期:2017-03-02 修改稿日期:2017-11-12 基金项目:国家自然科学基金项目(51678474);陕西省自然科学基金项目(2015JM5170) 第一作者:王先铁(1979-),男,博士,教授,主要从事钢结构与钢管混凝土结构方面的研究.E-mail: wangxiantie@163.com
更新日期/Last Update: 2018-02-11