[1]彭跃辉,黄琳雅,陈梦成袁明胜.陶瓷粉再生混凝土氯离子扩散性能研究[J].西安建筑科技大学学报(自然科学版),2019,51(02):177-0185,0229.[doi:10.15986/j.1006-7930.2019.02.004]
 PENG Yuehui,HUANG Linya,Chen Mengcheng,et al.Study on chloride diffusion properties of reclaimed concrete from ceramic powder[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):177-0185,0229.[doi:10.15986/j.1006-7930.2019.02.004]
点击复制

陶瓷粉再生混凝土氯离子扩散性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年02期
页码:
177-0185,0229
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Study on chloride diffusion properties of reclaimed concrete from ceramic powder
文章编号:
1006-7930(2019)02-0177-09
作者:
彭跃辉1黄琳雅2陈梦成1袁明胜1
(1. 南昌铁路勘测设计院有限责任公司,江西 南昌;2. 华东交通大学土木建筑学院,江西 南昌 330013)
Author(s):
PENG Yuehui1 HUANG Linya2 Chen Mengcheng2 YUAN Mingsheng2
(1. Nanchang Railway Survey and Design Institute Co. Ltd. Nanchang, China;(2. School of civil architecture, East China Jiaotong University, Nanchang 330013, China)
关键词:
陶瓷粉氯离子水胶比扩散系数耐久性
Keywords:
ceramic powder chloride ion water-to-binder ratio diffusion coefficient durability
分类号:
TU528.041
DOI:
10.15986/j.1006-7930.2019.02.004
文献标志码:
A
摘要:
针对自由氯离子在陶瓷粉再生混凝土中的扩散性能研究,试验采用自然浸泡法,探究了不同水胶比、陶瓷粉取代量以及浸泡时间三种因素对混凝土中氯离子扩散规律的影响。基于实测数据,通过研究不同陶瓷粉取代量对混凝土抗压强度的影响,以及自由氯离子浓度分布和扩散系数规律,并且对混凝土微观形貌进行分析。结果表明:混凝土的抗压强度随着陶瓷粉取代量的增大而降低;陶瓷粉混凝土的氯离子扩散系数随着浸泡时间的延长而减小,随着水胶比的增大而增大;混凝土中掺入陶瓷粉替代部分水泥能够提高混凝土的抗氯离子侵蚀性能,保护钢筋不易受到腐蚀,有效延长结构的使用寿命。掺入的陶瓷粉量在20%左右时能得到最佳效果。
Abstract:
In order to study the diffusion properties of free chloride ions in ceramic powder recycled concrete, the natural immersion method was used to investigate the effects of different water-to-binder ratios, ceramic powder substitution and soaking time on the diffusion of chloride ions in concrete. Based on the measured data, the effects of different ceramic powder substitutions on the compressive strength of concrete, the distribution of free chloride ion concentration and the law of diffusion coefficient were studied, and the microstructure of concrete was analyzed. The results show that the compressive strength of concrete decreases with the increase of ceramic powder substitution; the chloride ion diffusion coefficient of ceramic powder concrete decreases with the immersion time, and increases with the increase of water-to-binder ratio; The inclusion of ceramic powder in the concrete instead of part of the cement can improve the chloride ion corrosion resistance of the concrete, protect the steel bar from corrosion, and effectively extend the service life of the structure. The best effect is obtained when the amount of ceramic powder incorporated is about 20%.

参考文献/References:

参考文献 References[1] 肖卫,余红发,翁智财,等. 环境类型与氯盐浓度对矿渣混凝土表面氯离子浓度的影响[J]. 硅酸盐通报. 2015, 34(1): 1-6.XIAO Wei,YU Hongfa,WENG Zhicai,et al.Influence of environmental type and chloride concentration on chloride ion concentration on slag concrete surface. Bulletin Of The Chinese Ceramic Society. 2015, 34(1): 1-6.[2] 李建强,金祖权,陈永丰. 海洋环境混凝土对流区形成机理及氯离子迁移速率分析[J]. 混凝土. 2017(5): 55-58.LI Jianqiang,JIN Zuquan,CHEN Yongfeng. Formation mechanism of concrete convection zone and analysis of chloride ion migration rate in marine environment .Concrete. 2017(5): 55-58.[3] 张芹,郭力. 氯离子侵蚀下钢筋混凝土非线性锈胀破坏过程模拟[J]. 湖南大学学报(自然科学版). 2017, 44(5): 44-52.ZHANG Qin,GUO Li. Simulation of nonlinear corrosion and expansion failure process of reinforced concrete under chloride ion erosion. Journal of Hunan University (Natural Science Edition). 2017, 44(5): 44-52.[4] HEIDARI A, TAVAKOLI D. A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles [J]. Construction & building materials. 2013, 38(1): 255-264.[5] Vejmelková, Eva, Koňáková, Dana, Kulovaná, Tereza, et al. Mechanical and thermal properties of moderate-strength concrete with ceramic powder used as supplementary cementitious material [J]. Advanced Materials Research, 2014, 1054:194-198. [6] 师郡,张众. 复掺陶瓷粉和粉煤灰混凝土的工作性及强度[J]. 公路. 2016(12): 190-194.SHI Jun,ZHANG Zhong. Workability and strength of concrete mixed with ceramic powder and fly ash .2016(12): Highway. 190-194.[7] 元成方,牛荻涛. 海洋大气环境下粉煤灰混凝土耐久性研究[J]. 硅酸盐通报. 2012, 31(1): 1-6.YUAN Chengfang,NIU Ditao. Durability of fly ash concrete in marine atmosphere. Bulletin of the Chinese Ceramic Society. 2012, 31(1): 1-6.[8] 高子瑞,李淑娥,陈志明,等. 盐渍土氯离子在混凝土中运移的耦合模型研究[J]. 长江科学院院报. 2017, 34(5): 131-134.GAO Zirui,LI Shu’e,CHEN Zhiming,et al. Study on coupling model of chloride ion transport in concrete in saline soil. Journal of Changjiang Academy of Sciences. 2017, 34(5): 131-134.[9] 陈树东. 荷载与环境因素耦合作用下粉煤灰结构混凝土劣化规律与寿命预测[D]. 南京:东南大学, 2008.CHEN Shudong. Deterioration rule and life prediction of fly ash structural concrete under coupling load and environmental factors. Nanjing:Southeast University. 2008.[10] 方璇,韩建德,王曙光,等. 静力弯曲荷载作用下双掺混凝土氯离子侵蚀的试验研究[J]. 混凝土. 2016(2): 21-25.FANG Xuan,HAN Jiande,WANG Shuguang,et al. Experimental study on chloride ion erosion of double mixed concrete under static bending load. Concrete. 2016(2): 21-25.[11] 姜慧,喻孟雄,刘荣桂,等. 载荷作用后粉煤灰混凝土氯离子渗透性能试验研究[J]. 混凝土. 2015(3): 10-13.JIANG Hui,YU Mengxiong,LIU Ronggui,et al. Experimental study on chloride ion permeability of fly ash concrete after loading .Concrete. 2015(3): 10-13.[12] 孙丛涛,牛荻涛. 冻融环境混凝土氯离子扩散性能试验研究[J]. 硅酸盐通报. 2014, 33(8): 1863-1869.SUN Congtao,NIU Ditao. Experimental study on chloride diffusion of concrete in freeze-thaw environment. Bulletin of The Chinese Ceramic Society. 2014, 33(8): 1863-1869.[13] 付传清,金贤玉,田野,等. 多场耦合作用下氯离子分布场的数值模型[J]. 东南大学学报(自然科学版). 2010, 40(s2): 119-125.FU Chuanqing,JIN Xianyu,TIAN Ye,et al. Numerical model of chloride distribution field under multi field coupling. Journal of southeast university (natural science edition). 2010, 40(s2): 119-125.[14] 王前,张鑫,傅日荣. 计算混凝土中氯离子扩散系数的实用方法[J]. 山东建筑大学学报. 2006, 21(4): 288-290.WANG Qian,ZHANG Xin,FU Rirong. A practical method for calculating chloride diffusivity in concrete. Journal of Shandong Jianzhu University. 2006, 21(4): 288-290.[15] 余红发,孙伟,鄢良慧,等. 混凝土使用寿命预测方法的研究Ⅰ--理论模型[J]. 硅酸盐学报. 2002, 30(6): 686-690.YU Hongfa,SUN Wei,YAN Lianghui,et al. Study on prediction method of concrete service life. Journal of The Chinese Ceramic Society. 2002, 30(6): 686-690.[16] 陈梦成,袁素叶. 多重因素下混凝土氯离子扩散CA模型及寿命预测[J]. 铁道建筑. 2016(9): 134-138.CHEN Mengcheng,YUAN Suye. CA model and life prediction of chloride diffusion in concrete under multiple factors. Railway Construction. 2016(9): 134-138.[17] 何世钦,贡金鑫,赵国藩. 冻融循环下混凝土中氯离子的扩散性[J]. 水利水运工程学报. 2004(4): 32-36.HE Shiqin,GONG Jinxin,ZHAO Guofan. Chloride diffusivity in concrete under freeze-thaw cycles. Journal Of Water Conservancy Engineering. 2004(4): 32-36.[18] 王喜彬,张彩丽,赵彦迪. 水压力作用对混凝土氯离子侵蚀的影响研究[J]. 混凝土. 2016(5): 41-44.WANG Xibin,ZHANG Caili,ZHAO Yandi. Influence of water pressure on chloride ion erosion of concrete .Concrete. 2016(5): 41-44.[19] 齐广政. 海洋大气环境下混凝土氯离子侵蚀性能的试验研究[D]. 西安:西安建筑科技大学, 2012.QI Guangzheng. Experimental study on chloride ion erosion performance of concrete in marine atmosphere. Xi’an:Xi’an Univ. Of Arch. & Tech.. 2012.[20] 袁明胜. 陶瓷粉混凝土抗氯离子渗透性能试验研究[D]. 南昌:华东交通大学, 2018.YUAN Mingsheng. Experimental study on chloride ion penetration resistance of ceramic powder concrete. Nan-chang:East China Jiaotong University. 2018.

相似文献/References:

[1]元成方,牛荻涛,齐广政.干湿循环机制下碳化混凝土氯离子侵蚀试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(03):339.[doi:10.15986/j.1006-7930.2012.03.006]
 YUAN Cheng-fang,NIU Di-tao,QI Guang-zheng.Experimental study on chloride penetration into concrete after carbonation under wet and dry cycle mechanism[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(02):339.[doi:10.15986/j.1006-7930.2012.03.006]
[2]牛荻涛,陆炫毅,苗元耀,等.盐雾环境下疲劳损伤混凝土氯离子扩散性能[J].西安建筑科技大学学报(自然科学版),2015,47(05):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
 NIU Ditao,LU Xuanyi,MIAO Yuanyao,et al.Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(02):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
[3]罗大明 张桂涛.基于贝叶斯理论的氯离子扩散系数计算模型[J].西安建筑科技大学学报(自然科学版),2019,51(05):710.[doi:10.15986/j.1006-7930.2019.010.015]
 LUO Daming,ZHANG Guitao.Calculation model of chloride diffusion coefficient based on Bayesian theory[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):710.[doi:10.15986/j.1006-7930.2019.010.015]
[4]王 斌,于金山,李 天,等.修复混凝土内部钢筋纵向腐蚀行为研究[J].西安建筑科技大学学报(自然科学版),2023,55(04):520.[doi:10.15986/j.1006-7930.2023.04.006 ]
 WANG Bin,YU Jinshan,LI Tian,et al.Study on longitudinal corrosion behavior of internal reinforcement in repaired concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(02):520.[doi:10.15986/j.1006-7930.2023.04.006 ]

备注/Memo

备注/Memo:
收稿日期:2018-10-01 修改稿日期:2019-03-20基金项目:江西省教育厅科技落地计划项目(赣财教(2011)243号); 国家重点基础研究发展973计划前期研究专项(2011CB612210)第一作者:彭耀辉(1966-),男,高级工程师,主要从事公路、铁路选线及路基桥梁结构遇特殊材料应用研究。e-mail:306793608@qq.com通讯作者:陈梦成(1962-),男,教授,主要研究混凝土结构耐久性.E-mail: mcchen@ecjtu.edu.cn
更新日期/Last Update: 2019-05-23