[1]曹卫平,高帅鹏,秦强毅.上拔荷载作用下斜桩承载变形性状数值分析[J].西安建筑科技大学学报(自然科学版),2019,51(03):321-326,349.[doi:10.15986/j.1006-7930.2019.03.003]
 CAO Weiping,GAO Shuaipeng,QIN Qiangyi.Numerical analysis of deformation characteristics of batter piles under uplift load[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(03):321-326,349.[doi:10.15986/j.1006-7930.2019.03.003]
点击复制

上拔荷载作用下斜桩承载变形性状数值分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年03期
页码:
321-326,349
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Numerical analysis of deformation characteristics of batter piles under uplift load
文章编号:
1006-7930(2019)03-0321-06
作者:
曹卫平12高帅鹏1秦强毅13
(1.西安建筑科技大学 土木工程学院,陕西 西安710055;2.陕西省岩土与地下空间工程重点实验室,陕西 西安 710055;3.陕西建工第一建设集团有限公司七公司,陕西 西安710075)
Author(s):
CAO Weiping1 GAO Shuaipeng1 QIN Qiangyi12
(1.School of Civil Engineering, Xi′an Univ. of Arch.& Tech., Xi′an 710055, China; 2.Key Lab of Geotechnical and Underground Engineering of Shaanxi Province, Xi′an 710055, China; 3.Shaanxi Construction Group First Constrution Group Co., Ltd Xi′an 710075, China)
关键词:
斜桩数值分析倾角上拔荷载
Keywords:
batter piles numerical analysis inclined angle uplift load
分类号:
TU473.1
DOI:
10.15986/j.1006-7930.2019.03.003
文献标志码:
A
摘要:
通过有限元软件模拟了上拔荷载作用下斜桩的承载变形性状并与直桩进行比较,分析了桩身倾角对桩顶位移、极限抗拔承载力、桩身弯矩、剪力及轴力的影响,研究了斜桩-土接触压力、桩侧摩阻力的分布特征,探讨了长径比与斜桩有效桩长的关系.结果表明:在上拔荷载作用下,斜桩桩顶的上拔位移均大于相应直桩.桩身倾角及上拔荷载越大,上拔位移和水平位移越大;斜桩极限抗拔承载力大于直桩,且在15~20°之间存在一个最佳倾角使斜桩的极限抗拔承载力达到最大;桩身最大弯矩均出现在z/L=0.1处,最大剪力均出现在桩顶截面处.在z/L=0.4以下区域,桩身弯矩及剪力几乎全部为零.同一桩身相对深度处,桩身剪力及弯矩都随着倾角的增大而增大;直桩及各斜桩桩端存在真空吸力.倾角对桩身轴力的影响不大;桩-土接触压力的大小与桩身倾角的大小有关.桩与土沿深度方向脱离的范围随着倾角的增大而增大;斜桩左、右两侧摩阻力分布相差较大,其大小与倾角的大小有关;上拔荷载作用下斜桩存在有效桩长.倾角的大小对有效桩长影响不大.
Abstract:
The finite element software was used to simulate the load-bearing deformation behavior of the slanted piles under upward loading and compared with the vertical piles. The displacement of the pile top, ultimate pull-out capacity, bending moment, shear force and shaft of the pile were analyzed. The influence of force was studied on the distribution characteristics of slant pile-soil contact pressure and pile side friction resistance, and the relationship between length-diameter ratio and effective pile length of slanted pile was discussed. The results show that under the action of uplifting load, the uplift displacement of inclined pile top is larger than that of corresponding vertical pile.The greater the inclination angle and updraft load of the pile, the larger the uplift displacement and horizontal displacement; the ultimate pullout capacity of the inclined pile is greater than that of the vertical pile, and there is an optimal inclination angle between 10° and 20° so that the ultimate resistance of the inclined pile. Pulling load capacity reaches the maximum; the maximum bending moment of the pile appears at z/L=0.1, and the maximum shear force appears at the top of the pile section. In the area below z/L=0.4, the bending moment and shear force of the pile are almost zero. At the relative depth of the same pile body, the shear force and bending moment of the pile increase with the increase of the inclination angle; The vacuum suction force exists at the pile end of the vertical pile and each inclined pile. The dip angle has little effect on the axial force of the pile body; The pile-soil contact pressure is related to the size of the pile body inclination angle. The range of separation between pile and soil in depth direction increases with the increase of inclination angle; The distribution of friction resistance on the left and right sides of the inclined pile is quite different, and its size is related to the size of the inclination angle; Effective for the inclined pile under upward loading Pile length. The size of the dip has little effect on the effective pile length.

参考文献/References:

[1]COOPER S E. Ductile frames are tough for earthquakes[J]. Civil Engineering, 1991, 61(8): 61-63.

[2]BENSLIMANE A, JURAN I, HANNA S. Seismic behavior of micropile systems[J]. ASCE, 2010, 30(4): 239-258.
[3]徐斯林,韩劲松,赵利平. 海上嵌岩钻孔灌注斜桩施工技术[J]. 水运工程, 2009, 434(11): 167-170.
XU Silin, HAN Jingsong, ZHAO Liping. Construction technology of rock-socketed cast-in-place inclined pile on the sea[J]. Port & Waterway Engineering, 2009, 434(11): 167-170.
[4]靳彩, 赵瑜,李凤兰, 等. 送电线路铁塔复合式斜桩基础试验研究[J]. 工业建筑, 2001, 31(9): 45-47.
JIN Cai, ZHAO Yu, LI Fenglan, et al. The experimental research on the complex inclined pile foundation for power line tower[J]. Industrial construction, 2001, 31(9): 45-47.
[5]魏鉴栋, 陈仁朋, 陈云敏, 等. 微型桩抗拔特性原型试验研究[J]. 工程勘察, 2006 (8): 14-19.
WEI Jiandong, CHEN Renpeng, CHEN Yunmin, et al. Prototype test study on pullout characteristics of micropile[J]. Geotechnical Investigation& Surveying, 2006 (8): 14-19.
[6]吕凡任,陈仁朋,陈云敏, 等. 软土地基上微型桩抗压和抗拔特性试验研究[J]. 土木工程学报, 2005, 38(3): 99-105.
Lü Fanren, CHEN Renpeng, CHEN Yunmin, et al. Field tests on compression and uplift behavior of micropiles in soft ground[J]. Chian Civil Engineering Journal, 2005, 38(3): 99-105.
[7]范书立, 陈健云, 张俊清. 波浪荷载作用下斜向抗拔桩的承载特性分析[J]. 岩土力学, 2012, 33(1): 301-306.
FAN Lishu, CHEN Jianyun, ZHANG Junqing. Research on bearing capacity of inclined uplift pile under wave cyclic loading[J]. Rock and Soil Mechanics, 2012, 33(1): 301-306.
[8]NAZIR A, NASR A. Pullout capacity of batter pile in sand[J]. Journal of Advanced Research, 2013, 4(2): 147-154.
[9]MEYERHOF G G. Uplift resistance of inclined anchors and piles[C]//Proceedings of 8th international conference on soil mechanics and foundation engineering. Moscow:[s.n.], 1973.
[10]袁志林,段梦兰, 陈祥余, 等.水平荷载下导管架平台桩基础的非线性有限元分析[J]. 岩土力学,2012,33(8):2551-1560.
YUAN Zhilin, DUAN Menglan, CHEN Xiangyu, et al. Nonlinear finite element analysis of jacket platform pile foundations under lateral loads[J]. Rock and Soil Mechanics, 2012, 33(8):2551-1560.
[11]刘晋超,熊跟,朱斌,等.砂土海床中大直径单桩水平承载与变形特性[J] 岩土力学, 2015, 36(2):591-599.
LIU Jinchao, XIONG Gen, ZHU Bin, et al. Bearing capacity and deflection behaviors of large diameter monopile foundations in sand seabed[J]. Rock and Soil Mechanics, 2015, 36(2):591-599.
[12]蔡忠祥,刘陕南,高承勇,等. 基于混凝土损伤模型的灌注桩水平承载性状分析[J]. 岩石力学与工程学报,2014,33(增2):4032-4040.
CAI Zhongxiang, LIU Shannan, GAO Chengyong, et al. Aralysis of lateral resporse of bored piles based on concrete damaged plasticity model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014,33(S2):4032-4040.
[13]孔位学,芮勇勤,董宝第.岩土材料在非关联流动法则下剪胀角选取探讨[J].岩土力学,2009,30(11):3278-3282.
KONG Weixue, RUI Yongqin, DONG Baodi. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. Rock and Soil Mechanics, 2009, 30(11):3278-3282.
[14]AL-SHAKARCHI Y J, Fattah M Y, Kashat I K. The behaviour of batter piles under uplift loads[C]//Proceedings of international conference on geotechnical engineering. Sharjah:[s.n.],2004: 105-114.
[15]HANNA A M, AFRAM A. Pull-out capacity of single batter piles in sand: Reply[J]. Revue Canadienne De Géotechnique, 1987, 24 (3):468-468.
[16]CHATTOPADHYAY B C, Pise P J. Axial uplift capacity of inclined piles[J]. Indian Geotechnical J, 1986, 16(3): 197-214.

备注/Memo

备注/Memo:
收稿日期:2017-04-08修改稿日期:2019-05-05
基金项目:陕西省自然科学基础研究计划一般项目(2019JM-006)
第一作者:曹卫平(1969-),男,博士,教授,主要从事岩土工程教学及研究工作.E-mail:caowp@xauat.edu.cn
更新日期/Last Update: 2019-07-21