[1]任 祥,汪班桥,李 楠.地震作用下锚固滑坡的动力响应特性研究[J].西安建筑科技大学学报(自然科学版),2019,51(05):676-681.[doi:10.15986/j.1006-7930.2019.010.010]
 REN Xiang,WANG Banqiao,LI Nan.Study on dynamic response of anchorage landslide under earthquake at different loading magnitude[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(05):676-681.[doi:10.15986/j.1006-7930.2019.010.010]
点击复制

地震作用下锚固滑坡的动力响应特性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年05期
页码:
676-681
栏目:
出版日期:
2019-12-05

文章信息/Info

Title:
Study on dynamic response of anchorage landslide under earthquake at different loading magnitude
文章编号:
1006-7930(2019)05-0676-06
作者:
任 祥1汪班桥2李 楠2
(1.苏交科集团(甘肃)交通规划设计有限公司 甘肃 兰州 730010; 2.长安大学 地质工程与测绘学院,陕西 西安 710054)
Author(s):
REN Xiang1 WANG Banqiao2 LI Nan2
(1.Su Jiao Ke Group(Gansu)transportation planning and Design Co., Ltd.Lanzhou 730010,China 2.School of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China)
关键词:
锚固滑坡 振动台 锚杆格构 动力响应1
Keywords:
anchorage landslide shaking table anchor dynamic response
分类号:
TU411
DOI:
10.15986/j.1006-7930.2019.010.010
文献标志码:
A
摘要:
为了解不同强度地震作用下锚固滑坡的动力响应特性,依托大型振动台模型试验,对锚固滑坡的加速度响应、锚杆受力特性等规律进行研究.试验结果表明:地震激励作用下,锚杆格构支护下的滑坡整体性较好,未产生明显的坡面效应.各测点PGA随加载强度的增大呈增大趋势; 不同高程处的加速度响应 “上大下小”,且随加载强度的增大,高程放大效应越来越明显.各测点PGA放大系数在低强度加载下,随加载强度增大略有减小,而中高强度加载下随加载强度的增大首先缓慢增大,然后趋于稳定.低强度加载下,锚杆主动抗震抗滑特性未完全发挥,各层锚杆的轴力峰值差异不大,底层锚杆的轴力峰值略高于其他四层; 随着加载强度的增大,锚杆主动抗震抗滑特性增强,各层锚杆受力情况发生了调整,最终调整为“第一层(顶层)>第五层(底层)>第三层>第四层>第二层”,且顶层锚杆的受力随加载强度增大而增大的趋势越来越明显,其他四层则趋于稳定.试验成果可为高烈度地区锚固滑坡的抗震设计提供重要参考.
Abstract:
In order to study the dynamic response of the landslide with anchorage system, a larger shaking table model test was conducted. In this paper, the acceleration response of anchorage body and mechanical properties of anchor were studied respectively at different magnitude. Results indicated that no matter at however or low high magnitude, the anchorage structure globosity was better, and had no obvios superficial effect. Acceleration response of measuring points present “top big and bottom small” type in elevation direction, and it became more and more obvious with the loading magnitude. PGA of the measuring points was increasing with the loading magnitude. At low magnitude, PGA amplification factors of measuring points slightly decres with the loading magnitude, while at middle and high magnitude, they increas with the loading magnitude first and then inclined to be stable. At low magnitude, the active anti-sliding and anti-seismic effect of anchorage structure can not fully play their roles, and consequently, the average axial force peak value of each anchor had not much difference, but the bottom anchor and bottom cross beam were slightly larger than that of other four layers. With the loading ampitude, this distribution type was changed, and at last it presented “the top layer> the bottom layer >the third layer>the fourth layer>the second layer”. In addition, the average axial force peak value of top anchor increased obviously, while other four layers tended to be stable. Research results of this paper are useful for aseismic design of landslide treatment with anchors and lattice beam in high intensity areas.

参考文献/References:

[1] 周德培, 张建经, 汤涌. 汶川地震中道路边坡工程震害分析[J]. 岩石力学与工程学报, 2010, 29(3): 565-576. ZHOU Depei, ZHANG Jianjing, TANG Yong. Seismic damage analysis of road slopes in wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 565-576.
[2] 汪班桥, 郝建斌, 黄毓挺, 等.滑坡防治格构梁锚杆地震动力响应分析[J]. 四川大学学报(工程科学版), 2016, 48(3): 48-54.WANG Banqiao, HAO Jianbin, HUANG Yuting, et al. Study on the dynamic response for framed anchors in landslide prevention[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(3): 48-54.
[3] 郝建斌, 李金和, 程涛, 等. 锚杆格构支护边坡振动台模型试验研究[J]. 岩石力学与工程学报, 2015, 34(2): 293-304. HAO Jianbin, LI Jinhe,CHENG Tao, et al. Experimental study of slopes supported with framed anchors on shaking table[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 293-304.
[4] 蒋良潍, 姚令侃, 胡志旭, 等. 地震扰动下滑坡的浅表动力效应与锚固控制机理试验研究[J]. 四川大学学报(工程科学版), 2010, 42(5): 164-174. JIANG L W, YAO L K, HU Z X, et al. Experimental study on slope’s superficial dynamic effect and anchoring prevention mechanism under earthquake disturbance[J]. Journal of Sichuan University(Engineering Science Edition), 2010, 42(5): 164-174.
[5] 赖杰, 郑颖人, 刘云, 等. 抗滑桩和锚杆联合支护下边坡抗震性能振动台试验研究[J]. 土木工程学报, 2015, 48(9):96-103.LAI J, ZHENG Y R, LIU Y, et al. Shaking table text study on anti-slide piles and anchor bars of slope under earthquake[J] China Civil Engineering Journal, 2015, 48(9): 96-103.)
[6] QI W J, QIAN X, TONG N W, Seismic performance analysis of fill slope with pre-stressed anchors[J]. Applied Mechanics and Materials, 2013, 2545(353): 2052-2056.
[7] DONG Jianhua, ZHU Yanpeng, ZHOU Yong, et al. Dynamic calculation model and seismic response for frame supporting structure with prestressed anchors[J]. Science China Technological Sciences. 2010, 53(7): 1957-1966.
[8] 叶帅华. 黄土地区框架预应力锚杆支护边坡[D]. 兰州:兰州理工大学, 2012.YE Shuaihua. Dynamic response and stability analysis of slope supported by frame with pre-stressed anchors under earthquake in Loess area[D]. Lanzhou: Lanzhou University of Technology, 2012.
[9] 徐光兴, 姚令侃, 高召宁, 等. 边坡动力特性与动力响应的大型振动台模型试[J]. 岩石力学与工程学报, 2008, 27(3): 624-632.XU G X, YAO L K, GAO Z N, et al. Large-scale shaking table model test study on dynamic characteristics and dynamic responses of slope[J] Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 624-632.
[10]VALERIO DUARTE, COSTA JOSE SA DA. Identifying digital and fraction transfer functions from a frequencyresponse[J]. International Journal of Control, 2011, 84(3): 445-457.
[11]SAMIMI S E, MASIHI M. An improvement of the matrix-fracture transfer function in free fall gravitydrainage[J]. Petroleum Science and Technology, 2013, 31: 2612-2620.
[12]蒋良潍, 姚令侃, 吴伟, 等.传递函数分析在边坡振动台模型试验的应用探讨[J]. 岩土力学, 2010, 31(5): 1368-1374.JIANG L W, Yao L K, WU W, et al. Transfer function analysis of earthquake simulation shaking table model test of side slopes[J]. Rock and Soil Mechanics, 2010, 31(5): 1368-1374.
[13]杨俊杰. 相似理论与结构模型试验[M]. 武汉:武汉理工大学出版社, 2005.YANG Junjie. Similar theoretical and structural model test[M].Wuhan: Wuhan University of Technology Press 2005.
[14]黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模型[J]. 岩石力学与工程学报, 2009, 28(6): 1239-1249. HUANG Runqiu. Mechanism and geomechnical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1239-1249.
[15]范刚, 张建经, 付晓. 含软弱夹层顺层岩质边坡传递函数及其应用研究[J]. 岩土力学, 2017, 38(4): 1052-1059. FAN Gang, ZHANG Jianjing FU Xiao. Research on transfer function of bedding rock slope with soft interlayers and its application[J]. Rock and Soil Mechanics, 2017, 38(4): 1052-1059.
[16]韩冬冬, 门玉明. 胡兆江. 滑坡防治格构式预应力锚杆模型试验研究[J]. 岩土工程学报, 2015, 37(8): 1375-1380.HAN Dongdong, MEN Yuming, HU Zhaojiang. Model test on prestressed anchors with lattice beams in landslide protection[J]. Chinese Journal of Geotechnical Engineering. 2015, 37(8): 1375-1380.

备注/Memo

备注/Memo:
收稿日期:2018-11-13 修改稿日期:2019-09-20基金项目:国家自然科学基金资助项目(41440021,41572261),中央高校基本科研业务费专项资金项目(300102268209,310826172007)第一作者:任祥(1975-),男,高级工程师,硕士,主要从事岩土工程勘察、设计及科研工作.E-mail: 38906880@qq.com
更新日期/Last Update: 2019-12-05