[1]曹卫平,陶鹏,李升.扩底抗拔桩承载变形特性模型试验研究[J].西安建筑科技大学学报(自然科学版),2020,52(01):30-37.[doi:10.15986j.1006-7930.2020.01.005]
 CAO Weiping,TAO Peng,et al.Model experiment on bearing deformation behavior of uplift pedestal piles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(01):30-37.[doi:10.15986j.1006-7930.2020.01.005]
点击复制

扩底抗拔桩承载变形特性模型试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年01期
页码:
30-37
栏目:
出版日期:
2020-03-31

文章信息/Info

Title:
Model experiment on bearing deformation behavior of uplift pedestal piles
文章编号:
1006-7930(2020)01-0030-08
作者:
曹卫平12陶鹏1李升1
(1.西安建筑科技大学 土木工程学院, 陕西 西安 710055; 2.陕西省岩土与地下空间工程重点实验室, 陕西 西安 710055)
Author(s):
CAO Weiping1 2 TAO Peng1 LI Sheng1
(1.School of Civil Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 2.Shaanxi Key Laboratory of Geotechnical & Underground Space Engineering, Xi’an 710055, China)
关键词:
扩底抗拔桩 模型试验 承载力 内力
Keywords:
uplift pedestal pile model test bearing capacity internal force
分类号:
TU41
DOI:
10.15986j.1006-7930.2020.01.005
文献标志码:
A
摘要:
为了解扩底抗拔桩的承载特性和桩身内力的分布.本文通过室内模型试验研究了长径比、桩身表面粗糙程度这两个因素对扩底桩极限抗拔承载力、桩身轴力和桩侧摩阻力分布的影响,并与等截面桩进行了对比研究.结果表明:(1)当桩身长径比L/d为15和40时,扩底桩能显著提高等截面桩的极限抗拔承载力,提高幅度为30.8%~85.7%.(2)扩底桩抗拔力主要由等截面段桩侧摩阻力和扩大头抗力两部分构成,前者占总抗拔承载力比重随加载的增加而线性减小,后者占总抗拔承载力比重随加载的增加而线性增大.极限状态时,对L/d=15与40的扩底桩,扩大头抗力占总抗拔极限承载力的比例分别为50%和35%.(3)扩底桩在桩端附近的轴力小于等截面桩,且轴力值随加载的增加呈线性增长趋势.(4)扩底桩在桩端附近的桩侧摩阻力由于扩大头的侧向挤土效应而显著大于等截面桩对应位置处的侧摩阻力.极限状态时,前者的值约为后者的3.8倍.(5)当扩底桩达到极限抗拔承载力时,扩底桩在桩端附近处的桩侧摩阻力未达到最值,有进一步增大的趋势.该研究成果可为扩底抗拔桩的桩身结构设计提供有益参考.
Abstract:
In order to reveal the bearing deformation behavior of uplift pedestal piles in sand, model experiments were conducted in sand to investigate the impact of the length to its diameter and the roughness of pile-soil interface on the bearing capacity, axial force and friction resistance of pile side. And the group of straight-shaft piles were set in comparison. The results show that:(1)when the L/d=15 and 40, the bearing capacity of straight-shaft pile with enlarged base can be improved and the improving range from 30.8% to 85.7%.(2)the bearing capacity of pedestal pile mainly consists of two parts: the friction resistance of pile side of the equal section, and the resistance of the enlarged base. The former decreases linearly with the increase of the load and the latter increases linearly with the increase of the load. When the bearing capacity increases to its maximum, the sharing portions of the enlarged base are about 50% and 35% for the pedestal pile in L/d=15 and 40.(3)the axial force at the end of the pedestal pile is lager than the same position of the straight-shaft pile, and the value of it increases linearly with the increase of loading.(4)the side friction resistance of the enlarged section of the pedestal pile is larger than the corresponding section of the straight-shaft pile owing to the lateral squeezing effect of the enlarged base, and the side friction resistance of the former is about 3.8 times the latter when the bearing capacity reach the maximum.(5)when the bearing capacity reaches the maximum, the side friction near the pile end of the pedestal pile does not appear softening, and there is a tendency to further increase. The conclusions drawn from the study can provide valuable references for the structure design of uplift pedestal piles.

参考文献/References:

[1]POULOS H G,DAVIS E H. Pile foundation analsis and design[M]. New York: John Wiley & Sons, Inc,. 1980.
[2]滕延京, 王卫东, 康景文, 等.基础工程技术的新进展[J].土木工程学报,2016,49(4):1-21.TENG Yanjing, WANG Weidong, KANG Jingwen et al. The new development of the technology of building foundation engineering[J]. China Civil Engineering Journal, 2016, 49(4):1-21.
[3]吴江斌,王向军,王卫东.桩侧注浆与扩底抗拔桩的极限载荷试验研究[J].地下空间与工程学报,2018,14(1):154-161.WU Jiangbin, WANG Xiangjun, WANG Weidong. Comparison on bearing behavior of uplift piles with side-grouting and enlarged base by full-scale tests[J]. Chinese Journal of Underground Space and Engineering, 2018,14(1):154-161.
[4]王卫东, 吴江斌, 许 亮, 等. 软土地区扩底抗拔桩承载特性试验研究[J]. 岩土工程学报, 2007, 29(9): 1418-1422. WANG Weidong, WU Jiangbin, XU Lianget al. HUANG Shaoming. Full-scale field tests on uplift behavior of piles with enlarged base[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1418-1422.
[5]ILAMPARUTHI K, DICKIN E A. The influence of soil reinforcement on the uplift behaviour of belled piles embedded in sand[J]. Geotextiles and Geomembranes, 2001, 19(1): 1-22.
[6]ILAMPARUTHI K, DICKIN E A. Predictions of the uplift response of model belled piles in geogrid-cell-reinforced sand[J]. Geotextiles and Geomembranes, 2001, 19(2): 89-109.
[7]王卫东, 吴江斌, 王向军. 基于极限载荷试验的扩底抗拔桩承载变形特性的分析[J]. 岩土工程学报, 2016, 38(7): 1330-1338. WANG Weidong, WU Jiangbin, WANG XiangJun. Ultimate load tests on bearing and deformation behavior of uplift piles with enlarged base[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1330-1338.
[8]常林越, 王卫东, 吴江斌. 基于极限承载力试验的扩底抗拔桩承载特性数值模拟分析[J]. 岩土力学, 2015, 36(增刊1): 665-671. CHANG Lingyue, WANG Weidong, WU Jiangbin. Numerical simulation analysis of uplift behavior of enlarged base piles based on uplift ultimate bearing capacity test[J]. Rock and Soil Mechanics, 2015, 36(S1): 665-671.
[9]吴江斌, 王卫东, 黄绍铭. 扩底抗拔桩扩大头作用机制的数值模拟研究[J]. 岩土力学, 2008, 29(8): 2115-2120. WU Jiangbin, WANG Weidong, HUANG Shaoming. Uplift mechanism of enlarged base of pedestal piles by numerical analysis[J]. Rock and Soil Mechanics, 2008, 29(8): 2115-2120.
[10]孙晓立, 莫海鸿. 扩底抗拔桩变形的解析计算方法[J]. 岩石力学与工程学报, 2009, 28(z1):3008-3008. SUN Xiaoli, Mo Haihong. An analytical calculation method for displacement of under-reamed tension piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Z1):3008-3008.
[11]XU H F, YUE Q Z Q, QIAN Q H. Failure model of soil around enlarged base of deep uplift piles[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2012, 165(5): 275-288.
[12]XU H F, YUE Z Q, QIAN Q H. Predicting uplift resistance of deep piles with enlarged bases[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2009, 162(4): 225-238.
[13]黄茂松, 郦建俊, 王卫东, 等. 开挖条件下抗拔桩的承载力损失比分析[J]. 岩土工程学报, 2008, 30(9): 1291-1297. HUANG Maosong, LI Jianjun, WANG Weidong, et al. Loss ratio of bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1291-1297.
[14]郦建俊, 黄茂松, 王卫东, 等. 开挖条件下抗拔桩承载力的离心模型试验[J]. 岩土工程学报, 2010, 32(3): 388-396. LI Jianjun, HUANG Maosong, WANG Weidong, et al. Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 388-396.
[15]曹卫平, 陆清元, 樊文甫, 等. 竖向荷载作用下斜桩荷载传递性状试验研究[J]. 岩土力学, 2016, 37(11): 3048-3056.CAO Weiping, LU Qingyuan, FAN Wenfu, et al. Experimental study of load transfer behavior of batter piles under vertical loads[J]. Rock and Soil Mechanics, 2016, 37(11): 3048-3056.
[16]曹卫平, 夏冰, 赵敏, 等. 砂土中水平受荷斜桩的p-y曲线及其应用[J]. 岩石力学与工程学, 2018, 37(3): 743-753.CAO Weiping, XIA Bing, ZHAO Min, et al. p-y curves of laterally loaded single battered piles in sand and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(03): 743-753.
[17]中华人民共和国行业标准编写组. 建筑地基基础设计规范:GB 50007-2011[S]. 北京: 中国建筑工业出版社, 2011. The Professional Standards Compilation Group of People’s Republic of China.Code for design of building foundation: GB 50007-2011[S]. Beijing: China Architecture and Building Press, 2011.

相似文献/References:

[1]曹卫平,赵 呈,葛 欣,等.砂土中水平受荷斜桩性状模型试验研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):168.[doi:10.15986/j.1006-7930.2020.02.003]
 CAO Weiping,ZHAO Cheng,GE Xin,et al.Model tests on behaviors of horizontally loaded single batter piles in sand[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(01):168.[doi:10.15986/j.1006-7930.2020.02.003]
[2]吕韶全,孙狂飙,王少锋,等.考虑土体自重应力影响的抗滑桩三维土拱效应[J].西安建筑科技大学学报(自然科学版),2021,53(04):510.[doi:10.15986/j.1006-7930.2021.04.007]
 Lü Shaoquan,SUN Kuangbiao,WANG Shaofeng,et al.Three-dimensional soil arching effect considering the influence of soil gravity stress on anti-slide pile[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(01):510.[doi:10.15986/j.1006-7930.2021.04.007]

备注/Memo

备注/Memo:
收稿日期:2019-04-29修改稿日期:2020-03-15基金项目:陕西省自然科学基础研究计划一般基金项目(2019JM-006)第一作者:曹卫平(1969-),男,博士,教授,主要从事岩土工程教学及研究工作. E-mail:wp_cao@163.com
更新日期/Last Update: 2020-04-25