[1]王 刚,陆恒源,连 莲,等.充填节理加锚剪切强度特征及变形规律研究[J].西安建筑科技大学学报(自然科学版),2020,(02):184-191.[doi:10.15986/j.1006-7930.2020.02.005]
 WANG Gang,LU Hengyuan,LIAN Lian,et al.Study of shear strength characteristics and deformation rules of filling and anchored joints[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(02):184-191.[doi:10.15986/j.1006-7930.2020.02.005]
点击复制

充填节理加锚剪切强度特征及变形规律研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年02期
页码:
184-191
栏目:
出版日期:
2020-04-25

文章信息/Info

Title:
Study of shear strength characteristics and deformation rules of filling and anchored joints
文章编号:
1006-7930(2020)02-0184-08
作者:
王 刚12陆恒源1连 莲1张振松1
(1. 山东科技大学 山东省土木工程防灾减灾重点实验室,山东 青岛 266590; 2. 山东科技大学 矿山灾害预防控制省部共建国家重点试验室培育基地,山东 青岛 266590)
Author(s):
WANG Gang12 LU Hengyuan1 LIAN Lian1 ZHANG Zhensong1
(1.Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, China; 2. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China)
关键词:
含充填节理加锚 不同粗糙度 不同充填厚度 剪切强度 应力应变曲线
Keywords:
anchored filling joint different roughness different filling thickness shear strength stress-strain curves
分类号:
TU473
DOI:
10.15986/j.1006-7930.2020.02.005
文献标志码:
A
摘要:
基于含充填节理室内剪切试验数据,利用PFC2D探讨了含充填及加锚节理的数值实现方法,建立了不同粗糙度形态的含充填节理及其加锚计算模型,对比研究了含充填节理面在加锚和无锚状态下的强度特征及其应力应变曲线特性.研究结果表明:以室内含充填节理剪切试验结果为参数标定基础,获得准确细观参数,并可应用于后续含充填节理的加锚剪切模拟,且效果较好; 加锚情况下含充填节理的剪切强度相比不加锚情况具有一定程度的提高,且达到峰值强度时的应变量明显增加,但锚杆对含充填节理面抗剪强度贡献量不同; 同一充填厚度下,不同粗糙度的含充填节理面加锚剪切曲线可分为三种不同的曲线形式,其对应的锚杆贡献量不同; 同一粗糙度下,不同充填厚度的节理面加锚剪切行为差异较大,且存在一个临界充填厚度,此厚度下的加锚充填强度最大,且不同粗糙度的加锚节理面临界充填厚度不同
Abstract:
Based on the indoor shear test data of filling joints, this paper uses the PFC2D to explore the numerical implementation method of filling and anchoring joints. By establishing the filling joints of different roughness forms and their anchoring calculation models, the strength characteristics and stress-strain curves of the filled joints under anchored and unanchored conditions were compared. Results show that based on the shear test results of indoor filling joints, the accurate microscopic parameters are obtained, which can be applied to the shear simulation of subsequent anchoring and filling joints with good results. The shear strength of anchoring and filling joint is improved to some extent compared with that without anchoring, and the shear displacement is significantly increased when the strength reaches the peak value, but the contribution of the bolt to the shear strength of the filling joint is different. Under the same filling thickness, the shear curves of anchoring and filling joint surface with different roughness can be divided into three different forms, and the corresponding bolt contribution is also different. Under the same roughness, the shear behavior of anchoring and filling joints with different filling thicknesses is quite different, namely there exists a critical filling thickness, which maximizes the strength of anchoring and filling joints under this thickness, and the critical filling thickness of joint surface with different roughness is different

参考文献/References:

[1] 周喻, MISRA A, 吴顺川, 等. 岩石节理直剪试验颗粒流宏细观分析[J]. 岩石力学与工程学报, 2012, 31(6): 1245-1256.
ZHOU Yu, MISRA A, WU Shunchuan, et al. Macroscopic and microscopic analysis of particle flow in rock joint direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1245-1256.
[2] 郭冠龙. 昊锦塬煤矿含充填节理巷道围岩控制技术研究[D]. 徐州:中国矿业大学, 2015.
GUO Guanlong. Controlling technology of roadway surrounding rock containing infilled joints in Haojinyuan coal mine[D]. Xuzhou: China University of Mining and Technology, 2015.
[3] 张伟. 基于预应力锚杆模型的节理岩体稳定性非连续分析[D]. 武汉:中国科学院研究生院武汉岩土力学研究所. 2010.
ZHANG Wei. Discontinuous analysis of joint rock mass stability based on prestressed bolt model[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics, Graduate School of Chinese Academy of Sciences. 2010.
[4] 刘泉声, 雷广峰, 彭星新, 等. 锚杆锚固对节理岩体剪切性能影响试验研究及机制分析[J]. 岩土力学, 2017, 38(S1): 27-35.
LIU Quansheng, LEI Guangfeng, PENG Xingxin, et al. Experimental study and mechanism analysis of influence of bolt anchorage on shear behavior of jointed rock mass[J]. Rock and Soil Mechanics, 2017, 38(S1): 27-35.
[5] FERRERO A M. The shear strength of reinforced rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(6): 590-600.
[6] JALALIFAR H, AZIA N. Experimental and 3D numerical simulation of reinforced shear jointes[J]. Rock Mechanics and Rock Engineering, 2010, 43(1): 95-103.
[7] 韩立军, 宗义江, 韩贵雷,等. 岩石结构面注浆加固抗剪特性试验研究[J]. 岩土力学, 2011, 32(9):2570-2576.
HAN Lijun, ZONG Yijiang, HAN Guilei, et al. Study of shear properties of rock structural plane by grouting reinforcement[J], Rock and Soil Mechanics, 2011, 32(9): 2570-2576.
[8] 张伟, 刘泉声. 基于剪切试验的预应力锚杆变形性能分析[J]. 岩土力学, 2014, 35(8): 2231-2240.
ZHANG W, LIU Q S. Deformation performance analysis ofprestressed bolt based on shear test[J]. Rock and Soil Mechanics, 2014, 35(8): 2231-2240.
[9] 张伟, 刘泉声. 节理岩体锚杆的综合变形分析[J]. 岩土力学, 2012, 33(4): 1067-1074.
ZHANG Wei, LIU Quansheng. Comprehensive deformation analysis of jointed rock bolt[J]. Rock and Soil Mechanics, 2012, 33(4): 1067-1074.
[10]张永政, 王刚, 马明, 等. 不同粗糙度下锚固节理破坏机理宏细观研究[J]. 中南大学学报(自然科学版), 2017, 48(12): 3373-3383.
ZHANG Yongzheng, WANG Gang, MA Ming, et al. Macro-micro study on failure mechanism of anchorage joints under different roughness[J]. Journal of Central South University(Science and Technology), 2017, 48(12): 3373-3383.
[11]王刚, 袁康, 蒋宇静, 等. 剪切荷载下岩体结构面 - 浆体 - 锚杆相互作用机理宏细观研究[J]. 中南大学学报(自然科学版), 2015, 46(6): 2207-2215.
WANG Gang, YUAN Kang, JIANG Yujing, et al. Macro-micro mechanical on joint-grout-bolt interaction in rock mass subjected to shear loading[J]. Journal of Central South University(Science and Technology), 2015, 46(6): 2207-2215.
[12]周喻, 张怀静, 吴顺川, 等. 节理连通率对岩体力学特性影响的细观研究[J]. 岩土力学, 2015, 36(S2): 29-36.
ZHOU Yu, ZHANG Huaijing, WU Shunchuan, et al. Mesoscopic study on the influence of joint connectivity on mechanical properties of rock mass[J]. Rock and Soil Mechanics, 2015, 36(S2): 29-36.
[13]夏才初, 宋英龙, 唐志成, 等. 粗糙节理剪切性质的颗粒流数值模拟[J]. 岩石力学与工程学报, 2012, 31(8): 1545-1552.
XIA Caichu, SONG Yinglong, TANG Zhicheng, et al. Particle flow numerical simulation for shear behavior of rough joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1545-1552.
[14]石崇, 徐卫亚. 颗粒流数值模拟技巧与实践[M]. 北京:中国建筑工业出版社, 2015.
SHI Chong, XU Weiya. Numerical simulation techniques and practice of particle flow[M]. Beijing: China Building Industry Press, 2015.
[15]王刚, 袁康, 蒋宇静, 等. 基于颗粒离散元法的锚固节理剪切行为宏细观研究[J]. 煤炭学报, 2014, 39(12): 2381-2389.
WANG Gang, YUAN Kang, JIANG Yujing, et al. Macro-micro mechanical study on bolted joint subjected to shear loading based on DEM[J]. Journal of China Coal Society, 2014, 39(12): 2381-2389.
[16]Itasca Consulting Group. PFC2D(particle flow code in 2 dimensions)fish in PFC2D[R]. Minneapolis, USA: Itasca Consulting Group, 2008: 20-22, 83-85.
[17]王晓卿. 节理煤体模型重构及其力学响应特征研究[D]. 北京:中国矿业大学(北京), 2017.
WANG Xiaoqing. Model reconstruction of jointed coal and its mechanical response characteristics[D]. Beijing: China University of Mining and Technology(Beijing), 2017.
[18]袁康, 蒋宇静, 初振云, 等. 基于颗粒离散元法的岩体结构面锚固机理细观研究[J]. 山东科技大学学报(自然科学版), 2014, 33(6): 76-84.
YUAN Kang, JIANG Yujing, CHU Zhenyun, et al. Microscopic research on anchorage mechanism of bolted rock joint based on DEM[J]. Journal of Shandong University of Science and Technology(Natural Science Edition), 2014, 33(6): 76-84.
[19]腾俊洋, 张宇宁, 唐建新, 等. 锚固方式对节理岩体剪切性能影响试验研究[J]. 岩土力学, 2017, 38(8): 2279-2285.
TENG Junyang, ZHANG Yuning, TANG Jianxin, et al. Experimental study on the influence of anchoring method on the shear behavior of jointed rock mass[J]. Rock and Soil Mechanics, 2017, 38(8): 2279-2285.

备注/Memo

备注/Memo:
收稿日期:2019-08-15 修改稿日期:2020-03-25
基金项目:国家自然科学基金项目(51479108)
第一作者:王 刚(1976-),男,博士,教授,主要从事岩石力学与工程的科研与教学工作.E-mail:wanggang1110@gmail.com
通信作者:陆恒源(1997-),男,硕士生,研究方向为岩土工程.E-mail:1047230910@qq.com
更新日期/Last Update: 2020-04-25