[1]宋彦军.基于Hoek-Brown相关联流动法则的隧道稳定性分析[J].西安建筑科技大学学报(自然科学版),2020,(02):248-256.[doi:10.15986/j.1006-7930.2020.02.014]
 SONG Yanjun.Analysis of the stability of tunnels based on the Hoek-Brown and associated flow rule[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(02):248-256.[doi:10.15986/j.1006-7930.2020.02.014]
点击复制

基于Hoek-Brown相关联流动法则的隧道稳定性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年02期
页码:
248-256
栏目:
出版日期:
2020-04-25

文章信息/Info

Title:
Analysis of the stability of tunnels based on the Hoek-Brown and associated flow rule
文章编号:
1006-7930(2020)02-0248-09
作者:
宋彦军
(黄河交通学院 交通工程学院,河南 焦作 454950)
Author(s):
SONG Yanjun
(Huanghe Jiaotong University,College of Traffic Engineering, Jiaozuo 454950,China)
关键词:
Hoek-Brown失效准则 应变软化 弹塑性分析 相关联流动法则 MATLAB 圆形隧道
Keywords:
Hoek-Brown failure criterion strain-softening elasto-plastic analysis associated flow rule MATLAB circular tunnel
分类号:
TU45
DOI:
10.15986/j.1006-7930.2020.02.014
文献标志码:
A
摘要:
对于传统分析方法无法精准表征围岩的实际变形以及参数演化问题,在H-B准则和应变软化模型结合下选定塑性应变增量作为软化参数,并且假设强度参数随软化参数成线性函数关系.求解塑性区的解答时,将塑性区分成微元圆环,并假设每个圆环的径向应力沿半径向内均匀递减,从而建立每个微元圆环的平衡微分方程、本构方程、几何方程及相邻两微元之间的应力增量和应变增量的关系.最终建立了的圆形隧道在弹塑性交界面以及塑性区内的应力场、应变场和位移场的表达式,并将推导得到的理论表达式通过编程在MATLAB中实现了精准的数值计算,同时验证了程序运行的正确性.在完成上述研究内容以后,下一步将其应用到现场工程隧道中去论证建立理论模型和数值运算程序的实用性,为实现工程现场的稳定性监控和预警做准备
Abstract:
For the traditional analysis method, the actual deformation of the surrounding rock and the parameter evolution problem cannot be accurately characterized. The plastic strain increment is selected as the softening parameter under the combination of the H-B criterion and the strain softening model, and the strength parameter is assumed to be linearly related to the softening parameter. When solving the solution of the plastic zone, the plasticity is divided into micro-rings, and the radial stress of each ring is uniformly decreased inward along the radius, thus establishing the equilibrium differential equation and constitutive equation of each micro-ring. The geometric equation and the relationship between the stress increment and the strain increment between two adjacent microelements. Finally, the expressions of the stress field, strain field and displacement field of the circular tunnel in the elastoplastic interface and the plastic zone are established, and the theoretical expressions derived are accurately calculated by programming in MATLAB. Verifies the correctness of the program running. After completing the above research content, the next step is to apply it to the field engineering tunnel to demonstrate the practicality of establishing theoretical models and numerical calculation programs, in preparation for the stability monitoring and early warning of the project site

参考文献/References:

[1] LEE YK, PIETRUSZCZCAK S, et al. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Journal of Tunnel and Underground Space Technolgy, 2008, 23(5): 588.
[2] HOEK E, CARRANZA-TRRES C T, CORCUM B. Hoek-Brown failure criterion[C]// Proceedings of the North American Rock Mechanics Society. Toronto: Mining Innovation and Technology, 2002: 267.
[3] 朱合华,张琦,章连洋. Hoek-Brown 强度准则研究进展与应用综述[J].岩石力学与工程学报2013, 32(10): 1946.
ZHU Hehua, ZHANG Qi, ZHANG Lianyang. Review of research progresses and applications of Hoek-Brown strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 1946.
[4] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15.
[5] CARRANZA-TORRES C, FAIRHURST C, The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. Journal of Rock Mechanics and Mining Sciences. 1999, 36(6): 777.
[6] SHARAN S K, Elasto-brittle-plastic analysis of circular opening in Hoek-Brown media[J]. Journal of Rock Mechanicsand Mining Sciences, 2003, 40(6): 817.
[7] PARK K H, KIM Y J, Analytical solution for a circular opening in an elasto-brittle-plastic rock[J]. Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616.
[8] 薛海斌, 党发宁, 尹小涛, 等. 应变软化边坡稳定性分析[J].岩土工程学报, 2016, 38(3): 571.
XUE Haibin, DANG Faning, YIN Xiaotao, et al. Stability analysis methods for strain-softening slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 571.
[9] 彭俊, 荣冠, 周创兵, 等. 一种基于GSI弱化的应变软化模型[J]. 岩土工程学报, 2014, 36(3): 500.
PENG Jun, RONG Guan, ZHOU Chuangbing, et al. A strain-softening model based on GSI softening[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 500.
[10]SORENSEN E S, CLAUSEN J, DAMKILDE L.Finite element implementation of the H-B material model with general strain softening behavior[J], International Journal of Rock Mechanics and Mininng Sciences,2015.
[11]刘冬桥,王焯,张晓云.岩石应变软化特性和损伤本构模型研究[J],岩土力学,2017,38(10):2901.
LIU Dongqiao,WANG Wei,ZHANG Xiaoyun.Study on strain softening behavior and damage constitutive model of rock[J],Rock and Soil Mechanics,2017,38(10):2901.
[12]李守龙,李宗利,黄高峰.Hoek-Brown强度准则在隧道岩体稳定分析中的应用研究[J],长江科学院院报,2014,31(5):43.
LI Shoulong, LI Zongli, HUANG Gaofeng.Application of Hoek-Brown Strength Criterion in Stability Analysis of Tunnel Rock Mass[J], Journal of Yangtze River Scientific Research Institute, 2014, 31(5): 43.
[13]曹日红,曹平,张科,等.考虑应变软化的巷道交叉段稳定性分析[J].岩土力学,2013,34(6): 1760.
CAO Rihong,CAO Ping,ZHANG Ke, et al.Stability analysis of roadway cross section considering strain softening[J].Rock and Soil Mechanics,2013,34(6): 1760.
[14]陈梁,茅献彪,李明,等.基于 Drucker-Prager 准则的深部巷道破裂围岩弹塑性分析[J].煤炭学报,2017,42(2):484-491.
CHEN Liang,MAO Xianbiao,LI Ming, et al. Elastoplastic analysis of cracked surrounding rock in deep roadway based on Drucker-Prager criterion[J]. Journal of China Coal Society,2017,42(2):484-491.
[15]温森,杨圣奇.基于 Hoek-Brown 准则的隧洞围岩变形研究[J].岩土力学,2011,32(1):63-69.
WEN Sen,YANG Shengqi.Study of deformations of surrounding rock of tunnel based on Hoek-Brown criterion[J].Rock and Soil Mechanics,2011,32(1):63-69.

备注/Memo

备注/Memo:
收稿日期:2019-08-30 修改稿日期:2020-03-25
第一作者:宋彦军(1986-),女,博士,主要研究领域为土木工程施工管理.E-mail: 363927517@qq.com
更新日期/Last Update: 2020-04-25