[1]张莹莹,杨忠年,时 伟,等.冻融循环作用下膨胀土边坡稳定性模型试验研究[J].西安建筑科技大学学报(自然科学版),2020,(02):257-266.[doi:10.15986/j.1006-7930.2020.02.015]
 ZHANG Yingying,YANG Zhongnian,SHI Wei,et al.Model test study on the stability of expansive soil slope under freeze-thaw cycle[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(02):257-266.[doi:10.15986/j.1006-7930.2020.02.015]
点击复制

冻融循环作用下膨胀土边坡稳定性模型试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年02期
页码:
257-266
栏目:
出版日期:
2020-04-25

文章信息/Info

Title:
Model test study on the stability of expansive soil slope under freeze-thaw cycle
文章编号:
1006-7930(2020)02-0257-10
作者:
张莹莹1杨忠年1时 伟1李国玉3涂志斌1凌贤长12
(1. 青岛理工大学 土木工程学院,山东 青岛 266033; 2. 哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150001; 3. 中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000)
Author(s):
ZHANG Yingying YANG Zhongnian SHI Wei LI Guoyu TU Zhibin LING Xianzhang
(1.School of Civil Engineering,Qingdao university of technology, Qingdao 266033, China; 2.School of Civil Engineering,Harbin Institute of Technology, Harbin 150001, China; 3. National key laboratory of tundra engineering, Northwest Institute of Eco-environment and Resources, Lanzhou 730000, China)
关键词:
膨胀土边坡 冻融循环 位移 土压力 含水率
Keywords:
Expansive soil slope Freeze-thaw cycle Displacement Soil pressure The moisture content
分类号:
TU443
DOI:
10.15986/j.1006-7930.2020.02.015
文献标志码:
A
摘要:
采用重塑膨胀土进行室内边坡模型试验,研究膨胀土边坡在冻融循环作用下边坡模型的位移,土压力,含水率和孔隙压力的变化特性,反应冻融循环对膨胀土边坡稳定性影响.试验发现,冻融循环作用下膨胀土边坡表面裂隙由初始数量较少的直线型长裂隙向数量较多的网络状短裂隙发展,对沿深度方向上的裂隙发育亦存在显著影响.土压力在单次冻融中表现随温度降低土压力增大,反之亦然.边坡在冻融过程中始终表现冻缩融胀,但整体上表现出向临空面逐渐变形的趋势.且单个冻融循环周期内位移变化速率与温度绝对值呈正相关关系.含水率在单个冻融循环周期内呈现随温度降低而降低,温度升高反之,随试验进行含水率在深度方向表现出明显水分迁移现象.孔隙压力随温度降低先小幅度升高后大幅度下降,温度升高孔隙压力先升高后下降.孔隙压力受温度传导速度影响很大.首次冻融对边坡变形、含水率和孔隙压力影响很大,随着试验进行其变化都会趋于稳定
Abstract:
The reconstituted expansive soil was used for the indoor slope model test to study the displacement, soil pressure, moisture content and pore pressure of the expansive soil slope model under the action of freeze-thaw cycle, and to reflect the influence of freeze-thaw cycle on the stability of the expansive soil slope.It is found that the surface fissures of expansive soil slope under the action of freezing-thawing cycle develop from linear long fissures with few initial number to network short fissures with more number, which also has a significant influence on the development of fissures along the depth direction. Soil pressure in single freezing-thawing behavior increases with temperature decrease, and vice versa. In the process of freezing-thawing, the slope always shows freezing-shrinkage and thawing heave, but on the whole, it shows the tendency of deformation to the surface. Moreover, the displacement change rate in a single freezing-thawing cycle positively correlated with the temperature absolute value. The moisture content in a single freezing-thawing cycle decreases with the decrease of temperature, and vice versa. The moisture content in the depth direction shows an obvious water transfer phenomenon.With the decrease of temperature, the pore pressure increases at first and then decreases greatly, while the pore pressure increases at first and then decreases when the temperature increases.Pore pressure is greatly affected by temperature conduction velocity. The first freezing-thawing has a great influence on slope deformation, moisture content and pore pressure

参考文献/References:

[1] 马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014.
MA Wei, WANG Dayan. Mechanics of Frozen Ground[M]. Beijing: Science Press, 2014.
[2] 童长江, 管枫年. 冻胀与建筑物冻害防治[M]. 北京: 水利电力出版社, 1985.
DONG Changjiang, GUAN Fengnian. Frost heave and prevention and cure of building frost damage[M]. Beijing: Water Resources and Electric Power Press, 1985.
[3] 王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏粘土物理力学性质的影响[J]. 岩土力学与工程学报, 2005, 24(23): 4313-4319.
WANG Dayan, MA Wei, CHANG Xiaoxiao, et al. Physico-mechanical properties changes of qinghai-tibet clay due to freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4313-4319.
[4] CHUVILIN,Y M, YAZYNIN O M. Frozen soil macro-and microtexture formation[C]//Proc.Int Conf.Permafront, 5th. Norway. Trondheim: 1988, 2-5.
[5] WANG M, MENG S, SUN Y, et al. Shear strength of frozen clay under freezing-thawing cycles using triaxial tests[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(4):761-769.
[6] 方丽莉, 齐吉琳, 马巍, 冻融作用对土结构性的影响及其导致的强度变化[J]. 冰川冻土, 2012, 34(2): 435-440.
FANG Lili, QI Jilin, MA Wei. The influence of freezing-thawing on soil structure and its strength change[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 435-440.
[7] 苏谦, 唐第甲, 刘深. 青藏斜坡黏土冻融循环物理力学性质试验[J]. 岩石力学与工程学报. 2008, 27(S1): 2990-2994.
SU Qian, TANG Dijia, LIU Shen. Test on Physical-mechanical properties of qinghai-tibet slope clay under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1):2990-2994.
[8] GRAHAM J, AU V C S. Effects of freeze-thaw and softening on a natural clay at low stresses[J]. Canadian Geotechnical Journal, 1985, 22(1): 69-78.
[9] BENSON C H, OTHMAN M A. Hydraulic conductivity of compacted clay frozen and thawed in situ[J]. Journal of Geotechnical Engineering, 1993, 119(2): 276-294.
[10]SIMONSEN E, ISACSSON U. Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests[J]. Canadian Geotechnical Journal, 2001, 38(4):863-875.
[11]SIMONSEN E, JANOO V C. Isacsson U. Resilient properties of unbound road materials during seasonal frost conditions[J]. Journal of Cold Regions Engineering, 2002, 16(1): 28-50.
[12]边晓亚, 白俊龙, 张 军. 冻融对黄土边坡稳定性的影响[J]. 武汉工程大学学报, 2018, 40(4): 425-429.
BIAN Xiaoya, BAI Junlong, ZHANG Jun. Influence of Freeze-Thaw on Stability of Loess Slope[J]. Journal of Wuhan Institute of Technology, 2018, 40(4): 425-429.
[13]齐吉琳, 张建明, 朱元林. 冻融作用对土结构性影响的土力学意义[J]. 岩石力学与工程学报, 2003, 22(S2): 2690-1694.
QI Jilin, ZHANG Jianming, ZHU Yuanlin. Influence of frezzing-thawing on soil structure and its soil mechanics significance[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2690-1694.
[14]STARICKA J A, BENOIT G R. Freeze-drying effects on wet and dry soil aggregate stability[J]. Soil Science Society of America Journal, 1995, 59(1): 218-223.
[15]许雷, 薛洋, 鲁洋. 不同冻结温度条件下膨胀土冻融循环试验[J]. 水资源与水工程学报, 2016, 27(5): 189-193.
XU Lei, XUE Yang, LU Yang. Test of freeze-thaw cycle of expansive soil under condition of different freezing temperatures[J]. Journal of Water Resources Water Engineering, 2016, 27(5): 189-193.
[16]于琳琳. 不同人工冻结条件下土的冻胀试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 9-10.
YU Linlin. Test research on frost heave of soils under different artificial freezing conditions[D]. Harbin: Harbin Institute of Technology, 2006: 9-10.
[17]范秋雁, 刘金泉, 杨典森,等. 不同降雨模式下膨胀岩边坡模型试验研究[J]. 岩土力学, 2016, 37(12): 3401-3409.
FAN Qiuyan, LIU Jinquan, YANG Diansen, et al. Model test study of expansive rock slope under different types of precipitation[J]. Rock and Soil Mechanics, 2016, 37(12): 3401-3409.
[18]许雷, 刘斯宏, 鲁洋,等. 冻融环境下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(2): 167-174.
XU Lei, LIU Sihong, LU Yang, et al. Physico- mechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2016, 37(2): 167-174.
[19]刘华强, 殷宗泽. 裂缝对膨胀土抗剪强度指标影响的试验研究[J]. 岩土力学, 2010, 31(3): 727-731.
LIU Huaqiang, YIN Zongze. Research on analytical method of stability of expansive soil slope[J]. Rock and Soil Mechanics, 2010, 31(3): 727-731.
[20]郑郧, 马巍, 邴慧. 等. 冻融环境下黄土体结构损伤的尺度效应[J]. 岩土力学, 2018, 39(7): 2336-2344.
ZHENG Yun, MA Wei, BING Hui, et al. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287.
[21]冯德成, 林波, 张锋,等. 冻融作用对土的工程性质影响的研究进展[J], 中国科学: 技术科学, 2017, 47(2): 111-127.
FENG Decheng, LIN Bo, ZHANG Feng, et al.Research progress of freezing-thawing effect on engineering properties of soil[J]. Scientia Sinica: Technologica, 2017, 47(2): 111-127
[22]叶万军, 李长清, 杨更社,等. 冻融环境下黄土体结构损伤的尺度效应[J]. 岩土力学, 2018, 39(7): 2336-2344.
YE Wanjun, LI Changqing, YANG Gengshe, et al. Scale effects of damage to loess structure under freezing and thawing conditions[J]. Rock and Soil Mechanics, 2018, 39(7): 2336-2344.
[23]殷宗泽, 袁俊平, 韦杰,等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161.
YIN Zongze, YUAN Junping, WEI Jie, et al. Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineerg, 2012, 34(12): 2155-2161.
[24]徐丽丽, 张滨, 李兆宇,等. 冻融环境下加筋膨胀土边坡力学模型试验与研究[J]. 黑龙江大学工程学报, 2014, 5(3): 234-237.
XU Lili, ZHANG Bin, LI Zhaoyu. Experimental study of reinforced expansive soil slope in freeze-thaw environment[J]. Journal of Engineering of Heilongjiang University, 2014, 5(3): 234-237.
[25]张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩土力学与工程学报, 2015, 34(S1): 35967-3603.
ZHANG Ying, BING Hui, YANG Chengsong. Influence of freeze-thaw cycles on mechanical properties of silty clay based on SEM and MIP test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1):3597-3603.
[26]HAMILTON, B A. Freezing Shrinkage in Compacted Clays[J]. Canadian Geotechnical Journal, 1966, 3(1): 1-17.
[27]DAGESSE, D. F. Freezing-induced bulk soil volume changes[J]. Canadian Journal of Soil Science, 2010, 90(3):389-401.
[28]FLEUREAU Jean-Marie, KHEIRBEK-SAOUD Siba, SOEMITRO Ria, and, Said Taibi. Behavior of clayey soils on drying-wetting paths[J]. Canadian Geotechnical Journal, 1993, 30(2): 287-296.
[29]AMARASIRI A L, KODIKARA J K, COSTA S. Numerical modelling of desiccation cracking[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2011, 35(1):82-96.
[30]NOWAMOOZ H, MASROURI F. Relationships between soil fabric and suction cycles in compacted swelling soils[J]. Engineering Geology, 2010, 114(3-4): 444-455.
[31]ASTM. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort(12,400 ft-lbf/ft3(600 kN-m/m3))[S]. ASTM International, 2000.
[32]许颖, 丁春林, 吴科亮. 基于温度 - 应力耦合效应的冻土高边坡稳定特性分析[J]. 华东交通大学学报, 2015, 10(32): 19-26.
XU Ying, DING Chunlin, WU Keliang, et al. Stability characteristics of permafrost high slope based on temperature-stress coupling effect[J].Journal of East China Jiaotong University, 2015, 10(32): 19-26.
[33]杨果林. 膨胀土高边坡支挡结构设计方法与加固技术[M]. 北京: 科学出版社, 2018.
YANG Guolin. Design method and strengthening technique for retaining structure of high expansive soil slope. Beijing: Science Press, 2018.
[34]毛云程, 李国玉. 季节冻土区黄土路基水分与温度变化规律研究[J]. 冰川冻土, 2014, 36(4): 1011-1015.
MAO Yuncheng, LI Guoyu, Research on the moisture and temperature variation of loess roadbed in seasonally frozen ground regions[J].Journal of Glaciology and Geocryology, 2014, 36(4): 1011-1016.
[35]杨果林, 刘义虎. 膨胀土路基含水量在不同气候条件下的变化规律模型试验研究[J]. 岩土力学与工程学报, 2005, 24(24): 4524-4523.
YANG Guolin, LIU Yihu. Experimental study on moisture content of expansive soil roadbed under different water conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4524-4523.
[36]赵刚, 陶夏新, 刘兵. 原状土冻融过程中水分迁移试验研究[J]. 岩土工程学报, 2009, 31(12): 1952-1957.
ZHAO Gang, TAO Xiaxin, LIU Bing, Experimental study on water migration in undisturbed soil during freezing and thawing process[J]. Chinese Journal of Geotechnical Engineerg, 2009, 31(12): 1952-1957.
[37]徐祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
XU Xiaozu, WANG Jiacheng, ZHANG Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2010.
[38]张莲海, 马巍, 杨成松. 冻融循环过程中土体的孔隙水压力测试研究[J]. 岩土力学, 2015, 36(7): 1856-1864.
ZHANG Lianhai, MA Wei, YANG Chengsong, Pore water pressure measurement for soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2015, 36(7): 1856-1864.
[39]BAO Chenggang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering2004, 1(1): 1-15.
[40]XU Peiji, CHEN Yujiong. The relationship between water-gas morphology and mechanical properties of unsaturated soil[J]. Journal of Hydraulic Engineering, 1965, 1: 16- 23.

相似文献/References:

[1]陈涛,何伟.冻融循环层理砂岩破坏模式试验研究[J].西安建筑科技大学学报(自然科学版),2020,(1):79.[doi:10.15986j.1006-7930.2020.01.011]
 CHEN Tao,HE Wei.Research on failure modes of stratified sandstone under freeze-thaw cycling[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(02):79.[doi:10.15986j.1006-7930.2020.01.011]

备注/Memo

备注/Memo:
收稿日期:2019-07-25 修改稿日期:2020-03-25
基金项目:冻土工程国家重点实验室开放基金项目(SKLFSE201601); 山东省泰山学者专项基金项目(2015-212); 国家重大科研仪器开发基金项目(41627801)
第一作者:张莹莹(1994-),女,硕士生,研究方向为岩土工程.E-mail:1403749862@qq.com
通信作者:杨忠年(1985-),男,博士生,讲师,主要从事岩土工程和隧道工程方面的教学和科研工作.E-mail:yzhnqd@qu
更新日期/Last Update: 2020-04-25