[1]王 怡,王宇琨,孟晓静.高温热源工业建筑室内辐射热在各壁面分布研究[J].西安建筑科技大学学报(自然科学版),2020,(02):302-308.[doi:10.15986/j.1006-7930.2020.02.021]
 WANG Yi,WANG Yukun,et al.Indoor radiant heat distribution on the walls of industrial building with high temperature heat sources[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(02):302-308.[doi:10.15986/j.1006-7930.2020.02.021]
点击复制

高温热源工业建筑室内辐射热在各壁面分布研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年02期
页码:
302-308
栏目:
出版日期:
2020-04-25

文章信息/Info

Title:
Indoor radiant heat distribution on the walls of industrial building with high temperature heat sources
文章编号:
1006-7930(2020)02-0302-07
作者:
王 怡12王宇琨12孟晓静13
(1.西安建筑科技大学 西部绿色建筑国家重点实验室,陕西 西安 710055; 2. 西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055; 3.西安建筑建筑科技大学 资源工程学院,陕西 西安 710055)
Author(s):
WANG Yi1 2 WANG Yukun1 2 MENG Xiaojing1 3
(1. State Key Laboratory of Green Building in Western China, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 2. School of Building Services Science and Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 3. School of Resources Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China)
关键词:
高温热源 工业建筑 净辐射得热 辐射热分布
Keywords:
high temperature heat source industrial building net radiation heat gain radiant heat distribution
分类号:
TU111.1
DOI:
10.15986/j.1006-7930.2020.02.021
文献标志码:
A
摘要:
针对高温热源工业建筑室内辐射热在各壁面分布情况,采用有效辐射法,通过理论分析,结合MATLAB进行数值计算,分别研究了围护结构内表面温度、角系数以及热源发射率对室内辐射热在各壁面分布的影响.结果发现:围护结构内表温度对各壁面的净辐射得热强度和净辐射热分配比例的影响可以忽略; 壁面净辐射得热强度、净辐射热分配比例分别与该壁面对热源面的角系数、热源面对该壁面的角系数成正比; 壁面净辐射得热强度与热源发射率成正比,净辐射得热分配比例与热源发射率无关
Abstract:
This paper investigates the distribution of radiation in an industrial building with high temperature heat sources. Theoretical analysis and MATLAB calculation are carried out. The effects of inner surface temperature, angle factor and emissivity on the distribution of indoor thermal radiation were studied. Results showed that. The influence of inner surface temperature on the net radiant heat intensity and net radiant heat distribution ratio of each wall can be ignored: The net radiant heat intensity of the wall is proportional to the angular coefficient of the wall to the heat source, and the net radiant heat distribution ratio of each wall is proportional to the angular coefficient of the heat source to the wall. The net radiant heat intensity on the wall is proportional to the emissivity of the heat source, and the net radiant heat distribution ratio of each wall is independent of the emissivity of the heat source

参考文献/References:

[1] 李先庭, 赵彬. 室内空气流动数值模拟[M]. 北京: 机械工业出版社, 2009: 101-102.
LI Xianting, ZHAO Bin. Numerical simulation of indoor airflow [M]. Beijing: China Machine Press, 2009: 101-102.
[2] YAN Chengchu, WANG Shengwei, SHAN Kui, et al. A simplified analytical model to evaluate the impact of radiant heat on building cooling load [J]. Applied Thermal Engineering, 2015, 77: 30-41.
[3] LIAN Zhiwei, ZHANG Yan. Distribution ratio of radiant heat and its effect on cooling load [J]. International Journal of Thermal Sciences, 2003, 42: 311-316.
[4] 连之伟, 顾瑞英. 求解热源辐射热分配比例的两种方法[J]. 西安建筑科技大学学报(自然科学版), 1997, 29(1): 15-19.
LIAN Zhiwei, GUI Ruiying.Two methods for solving the radiative heat distribution ratio of a heat source [J]. J. of Xi’an Univ. of Arch. & Tech(Natural Science Edition), 1997, 29(1): 15-19.
[5] 赵鸿佐. 室内热对流与通风[M]. 北京: 中国建筑工业出版社, 2010:80.
ZHAO Hongzuo.Indoor heat convection and ventilation [M]. Beijing: China Architecture & Building Press, 2010:80.
[6] MENG Xiaojing, WANG Yi, LIU Tiening, et al. Influence of radiation on predictive accuracy in numerical simulation of thermal environment in industrial buildings with buoyancy-driven natural ventilation [J]. Applied Thermal Engineering, 2016, 96: 473-480.
[7] 孟晓静. 高温热源工业建筑双辐射作用下室内热环境特性研究[D]. 西安: 西安建筑科技大学, 2016.
MENG Xiaojing. Study on indoor thermal environment characteristics of industrial buildings with high temperature heat source under double radiation [D]. Xi’an: Xi’an Univ. of Arch. & Tech., 2016.
[8] TANIGUCHI H, OHMORI T, Iwata M, et al. Numerical study of radiation-convection heat transfer [J]. Heat Transfer-Asian research, 2002, 34(5): 391-407.
[9] 章熙民. 传热学[M]. 6版. 北京: 中国建筑工业出版社, 2015: 235-242.
ZHANG Ximin. Heat transfer [M]. 6th edition. Beijing: China Architecture & Building Press, 2015: 235-242.
[10]严启森. 筑热过程[M]. 北京: 中国建筑工业出版社, 1986: 181-182.
YAN Qisen. Building thermal process [M]. Beijing: China Architecture & Building Press, 1986: 181-182.
[11]杨贤荣. 辐射换热角系数手册[M]. 北京: 国防工业出版社, 1982: 206-220.
YANG Xianrong. Handbook of radiant heat transfer Angle coefficients [M]. Beijing: National Defense Industry Press, 1982: 206-220.

备注/Memo

备注/Memo:
收稿日期:2019-07-24 修改稿日期:2020-03-25
基金项目:国家重点研发计划项目(2018YFC0705300); 国家自然科学基金项目(51608425); 陕西省重点科技创新团队(2017KCT-14)
第一作者:王 怡(1970-),女,教授,博士生导师,主要从事建筑通风理论及其在实际中应用研究.E-mail: wangyi6920@126.com

更新日期/Last Update: 2020-04-25