[1]朱兴云,繆广吉,周宏伟,等.软黏土中坑中坑式内支撑基坑抗隆起稳定性分析[J].西安建筑科技大学学报(自然科学版),2020,(04):505-513.[doi:10.15986-j.1006-7930.2020.04.006]
 ZHU Xingyun,MIAO Guangji,ZHOU Hongwei,et al.Basal heave stability analysis of pit-in-pit braced excavations in clay[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(04):505-513.[doi:10.15986-j.1006-7930.2020.04.006]
点击复制

软黏土中坑中坑式内支撑基坑抗隆起稳定性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年04期
页码:
505-513
栏目:
出版日期:
2020-09-25

文章信息/Info

Title:
Basal heave stability analysis of pit-in-pit braced excavations in clay
文章编号:
1006-7930(2020)04-0505-09
作者:
朱兴云1繆广吉2周宏伟3林上顺4李惠霞4
(1.中铁二局第五工程有限公司,四川 成都 610000; 2.福州大学 土木工程学院,福建 福州 350116; 3. 中国中铁二局第三工程有限公司,四川 成都 610000; 4.福建工程学院 土木工程学院,福建 福州 350118)
Author(s):
ZHU Xingyun1MIAO Guangji2ZHOU Hongwei3 LIN Shangshun4LI Huixia4
(1.China Railway Second Bureau Fifth Engineering Co., Ltd., Chengdu 610000, China; 2.College of Civil Engineering, Fuzhou University, Fuzhou 350116, China; 3.China Railway Second Bureau Third Engineering Co., Ltd., Chengdu 610000, China; 4.School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, China)
关键词:
坑中坑 抗隆起稳定 强度折减 有限元
Keywords:
pit-in-pit basal heave stability shear strength reduction technique finite element method
分类号:
TU 443
DOI:
10.15986-j.1006-7930.2020.04.006
文献标志码:
A
摘要:
坑中坑式基坑在基坑底部进行二次开挖,其隆起破坏机理比普通单一基坑要复杂.采用强度折减有限元分析法研究坑中坑式基坑的抗隆起稳定性.研究了内外坑间平台宽度,内坑宽度和深度,内外坑挡墙的插入深度,软土层不排水抗剪强度等归一化参数对坑中坑式基坑抗隆起破坏模式及抗隆起稳定安全系数的影响.坑中坑式基坑的抗隆起破坏模式可分为三种内外坑整体隆起破坏(M1),内外坑整体隆起破坏和外坑独立隆起破坏同时发生(M2),外坑独立隆起破坏(M3).确定基坑破坏模式在M1,M2以及M3之间转化时,各个参数的临界值.增大内外坑间平台宽度,内外坑挡墙的插入深度以及软土层的不排水抗剪强度,会提高坑中坑式基坑的抗隆起稳定安全系数.增大内坑的宽度和深度则会降低坑中坑式基坑的抗隆起稳定安全系数.
Abstract:
For pit-in-pit excavated in the bottom of outer pit, the failure mechanism of basal heave is more complicated than normal pit. Finite element method based on the reduced shear strength technique is used to evaluate the basal heave stability of pit-in-pit excavations. The influence of spacing between inner and outer pit, width and depth of inner pit, depth of inner and outer wall insertion, undrained shear strength of clay on the failure modes and factor of safety is analyzed. In conclusion, there are three kinds of failure modes of pit-in-pit excavation: entire failure of inner and outer pit(M1), entire failure of inner and outer pit(M2), failure of outer braced pit(M3). The critical value of parameters is determined for the change of different failure modes. The basal stability of pit-in-pit excavations will increase with the spacing between inner and outer pit, The depth of inner and outer wall insertion, and the undrained shear strength of clay. Nevertheless it will decrease with the increase of width and depth of inner pit.

参考文献/References:

[1] SUN Y, ZHOU S, LUO Z. Basal-heave analysis of pit-in-pit braced excavations in soft clays[J]. Computers and Geotechnics, 2017, 81: 294-306.
[2] TAN Y, LU Y, XU C, et al. Investigation on performance of a large circular pit-in-pit excavation in clay-gravel-cobble mixed strata[J]. Tunnelling and Underground Space Technology, 2018, 79: 356-374.
[3] SUN Y, ZHAO Y, ZHANG D. Surface subsidence of pit-in-pit foundation in sand–cobble stratum in Beijing area[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2019, 172(2): 96-107.
[4] TERZAGHI K, PECK R B. Soil mechanics in engineering practice[M]. New York: John Wiley & Sons, 1968.
[5] BJERRUM L, EIDE O. Stability of strutted excavations in clay[J]. Géotechnique, 1956, 6(1): 32-47.
[6] CHANG M F. Basal stability analysis of braced cuts in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 276-279.
[7] 张耀东, 龚晓南. 软土基坑抗隆起稳定性计算的改进[J]. 岩土工程学报, 2006, 28(S1): 1378-1382.
ZHANG Yaodong, GONG Xiaonan. Improvement on basal heave stability analysis for excavations in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S1): 1378-1382
[8] HSIEH P G, Ou C Y, LIU H T. Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay[J]. Canadian Geotechnical Journal, 2008, 45(6): 788-799.
[9] 王洪新. 基坑的尺寸效应及考虑开挖宽度的抗隆起稳定安全系数计算方法[J]. 岩土力学, 2016, 37(S2): 433-441.
WANG Hongxin. Size effect of foundation pits and calculation method of safety factor of heave-resistant stability considering excavation width[J]. Rock and Soil Mechanics, 2016, 37(S2):433-441.
[10]DRUCKER D C, GREENBERG H J, PRAGER W. The safety factor of an elastic-plastic body in plane strain[J]. J. Appl. Mech., 1951, 18(4): 371-378.
[11]LIAO H J, SU S F. Base stability of grout pile-reinforced excavations in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(2): 184-192.
[12]HUANG M, TANG Z, YUAN J. Basal stability analysis of braced excavations with embedded walls in undrained clay using the upper bound theorem[J]. Tunnelling and Underground Space Technology, 2018, 79: 231-241.
[13]UKRITCHON B, WHITTLE A J, SLOAN S W. Undrained stability of braced excavations in clay[J]. Journal of geotechnical and Geoenvironmental Engineering, 2003, 129(8): 738-755.
[14]SLOAN S W. Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-571.
[15]ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique, 1975, 25(4): 671-689.
[16]GOH A T C. Assessment of basal stability for braced excavation systems using the finite element method[J]. Computers and Geotechnics, 1990, 10(4): 325-338.
[17]FAHEEM H, CAI F, UGAI K. Three-dimensional base stability of rectangular excavations in soft soils using FEM[J]. Computers and Geotechnics, 2004, 31(2): 67-74.
[18]DO T N, OU C Y, LIM A. Evaluation of factors of safety against basal heave for deep excavations in soft clay using the finite-element method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2125-2135.
[19]GOH A T C. Basal heave stability of supported circular excavations in clay[J]. Tunnelling and Underground Space Technology, 2017, 61: 145-149.
[20]KEAWSAWASVONG S, UKRITCHON B. Stability of unsupported conical excavations in non-homogeneous clays[J]. Computers and Geotechnics, 2017, 81: 125-136.
[21]MARTIN C M. The use of adaptive finite-element limit analysis to reveal slip-line fields[J]. Géotechnique Letters, 2011, 1(2): 23-29.
[22]CIRIA H, PERAIRE J, BONET J. Mesh adaptive computation of upper and lower bounds in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2008, 75(8): 899-944.

备注/Memo

备注/Memo:
收稿日期:2020-01-22 修改稿日期:2020-07-13
基金项目:国家自然科学基金资助项目(41572253)
第一作者:朱兴云(1971-),男,高级工程师,主要从事岩土工程.E-mail: 729069920@qq.com
更新日期/Last Update: 2020-09-25