[1]潘明众,刘艳峰,周 勇 田师果.集热蓄热墙式被动构件向房间传热量的简化计算方法[J].西安建筑科技大学学报(自然科学版),2020,(04):594-601.[doi:10.15986-j.1006-7930.2020.04.018]
 PAN Mingzhong,LIU Yanfeng,ZHOU Yong,et al.Simplified calculation method for heat transfer of tromble wall[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(04):594-601.[doi:10.15986-j.1006-7930.2020.04.018]
点击复制

集热蓄热墙式被动构件向房间传热量的简化计算方法()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年04期
页码:
594-601
栏目:
出版日期:
2020-09-25

文章信息/Info

Title:
Simplified calculation method for heat transfer of tromble wall
文章编号:
1006-7930(2020)04-0594-08
作者:
潘明众12刘艳峰12周 勇12 田师果12
(1.西安建筑科技大学 西部绿色建筑国家重点实验室,陕西 西安 710055; 2.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055)
Author(s):
PAN Mingzhong12 LIU Yanfeng12ZHOU Yong12 TIAN Shiguo12
(1.State Key Laboratory of Green Building in Western China, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 2.School of Building Services Science and Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China)
关键词:
结构参数 集热蓄热墙 传热量 回归分析
Keywords:
structural parameters tromble wall heat transfer regression method
分类号:
TU111
DOI:
10.15986-j.1006-7930.2020.04.018
文献标志码:
A
摘要:
基于热平衡法分析了集热蓄热墙的结构参数对其对流、导热传热量的影响,发现不同结构参数的集热蓄热墙的逐时传热量与其极大值的比值为高度重合的一簇曲线,进而提出对流、导热传热因子表征该簇曲线.在得到不同地区的对流、导热传热因子后,只要得到该地区结构参数与对流、导热传热量极大值的关系进而就可以得到逐时对流、导热传热量.因此,通过回归分析得到集热蓄热墙4个关键结构参数与对流、导热传热量极大值之间的多元非线性回归模型.最后对比分析了回归模型与理论计算的传热量.结果表明,各典型地区对流、导热传热量回归模型的R2分别在0.96~0.97、0.94~0.95之间,rRSME分别在0.10~0.14、0.24~0.28之间.表明回归模型能较为准确预测集热蓄热墙逐时传热量,满足工程计算精度要求,可为被动房设计提供一定指导.
Abstract:
Based on the heat balance method, the influence of the structural parameters of tromble wall on the convection and heat transfer is analyzed. It is found that the ratio of the hourly heat transfer capacity of the tromble wall with different structural parameters to its maximum value is highly coincident. A cluster of curves is proposed to characterize the cluster curve by convective and thermal conduction heat transfer coefficients. After obtaining the convection and heat transfer coefficients of different regions, the relationship between the structural parameters of the region and the maximum values of convection and heat transfer heat transfer can be obtained, and the convection and heat conduction heat transfer can also be obtained. Therefore, a multivariate nonlinear regression model between four key structural parameters of the heat collecting wall and the maximum value of convection and heat transfer is obtained by regression analysis. Finally, the heat transfer of the regression model and the theoretical calculation is analyzed. Rresults show that the R2 of the convective and heat transfer models in typical areas are between 0.96~0.97 and 0.94~0.95, and rRSME are between 0.10~0.14 and 0.24~0.28, respectively. It shows that the regression model can accurately predict the heat transfer capacity of the collector heat storage wall and meet the engineering calculation accuracy requirements, which can provide some guidance for passive house design.

参考文献/References:

[1] ABBASS F, DIMASSIi N, DEHMANI L. Energetic study of a Trombe wall system under different Tunisian building configurations[J]. Energy and Buildings,2014, 80:302-308.
[2] 高庆龙. 被动式太阳能建筑热工设计参数优化研究[D]. 西安:西安建筑科技大学,2006.
GAO Qinglong. Research on the optimization of passive solar building thermal design parameters [D]. Xi’an: Xi’an Univ. of Arch. & Tech., 2006.
[3] 王德芳.集热墙不稳态传热问题的反应系数解法[J].太阳能学报.1990,11(4):361-365.
WANG Defang. The reaction coefficient method of the unstable heat transfer problem of the collector wall[J]. Journal of Solar Energy. 1990, 11(4):361-365.
[4] DUFFIN R J,KNOWLES Greg.A simple design method for the Trombe wall[J].Solar Energy,1985,34(1):69-72.
[5] KENNISH W.J.Determination of thermal performance characteristics of module passive solar storage walls[C]. //5th national passive solar conference. Massachusettst: University of Massachusetts Amherst, 1980.
[6] 孟长再,巴特尔,马广兴.被动式太阳房的集热部件优化选型及集热面积简易计算方法探讨[J]. 内蒙古工业大学学报,2002,21(4):311-316.
MENG Changzai, BATTELLE, MA Guangxing. Optimal selection of heat collection components for passive solar houses and discussion on simple calculation method of heat collection area[J]. Journal of Inner Mongolia University of Technology, 2002,21(4):311-316.
[7] 高文娟,狄洪发. 花格式集热蓄热墙热性能的简化计算[J]. 农业工程学报, 1989, 5(4): 40-45.
GAO Wenjuan, DI Hongfa. Simplified calculation of thermal performance of flower-type heat-collecting and storage wall[J]. Transactions of the Chinese Society of Agricultural Engineering, 1989, 5(4): 40-45.
[8] 李元哲.被动式太阳房热工设计手册[M]. 北京: 清华大学出版社,1993.
LI Yuanzhe. Passive solar house thermal design manual[M]. Beijing: Tsinghua University Press, 1993.
[9] 刘加平,闫增峰,刘艳峰,等.窑居太阳房室内热环境动态分析的简化模型[J]. 西安建筑科技大学学报(自然科学版),2000,32(2):103-107.
LIU Jiaping, YAN Zengfeng, LIU Yanfeng, et al. Simplified model for dynamic analysis of indoor thermal environment in kiln solar house[J]. J. of Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2000,32(2):103-107.
[10]BAIRI A,MARTIN-GARIN A,ADEYEYE K,et al. Enhancement of natural convection for improvement of Trombe wall performance: An experimental study[J]. Energy & Buildings,2020,211.
[11]王德芳,午锁平,喜文华.被动式太阳能采暖房数学模型及模拟计算程序—直接受益型和集热墙型PSHDC(下篇)[J]. 甘肃科学学报,1990, 1(2): 19-27.
WANG Defang, WU Suoping, XI Wenhua. Mathematical model and simulation calculation program of passive solar heating room: Direct benefit type and collector wall type PSHDC(Part 2)[J]. Journal of Gansu Sciences, 1990, 1(2): 19-27.
[12]被动式太阳能建筑技术规范:JGJ/T 267-2012[S]. 北京:中国建筑工业出版社,2012.
Technical specification for passive solar energy buildings: JGJ/T 267-2012[S]. Beijing: China Construction Industry Press, 2012.
[13]孙晴,李明海,鲁娟,等. 基于多元线性回归方法的高校宿舍建筑能耗分析[J]. 西安建筑科技大学学报(自然科学版),2018, 50(6):153-158.
SUN Qing, LI Minghai, LU Juan, et al. Energy consumption analysis of college dormitory buildings based on multiple linear regression methods[J]. J. of Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2018, 50(6):153-158.
[14]杨柳, 候立强, 李红莲,等. 空调办公建筑能耗预测回归模型[J]. 西安建筑科技大学学报(自然科学版),2015,47(5):707-711.
YANG Liu, HOU Liqiang, LI Honglian, et al. Regression model for energy consumption prediction of air-conditioned office buildings[J]. J. of Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2015,47(5):707-711.
[15]LIU Yanfeng,ZHOU Yong,WANG Dengjia.Classification of solar radiation zones and general models for estimating the daily global solar radiation on horizontal surfaces in China[J]. Energy Conversion and Management. 2017,154(12): 168-179.

备注/Memo

备注/Memo:
收稿日期:2019-02-23 修改稿日期:2020-07-13
基金项目:“十三五”国家重点研发基金资助项目(2016YFC0700400)
第一作者:潘明众(1995-),男,硕士研究生,主要从事与建筑节能.E-mail:panmingzhong@live.xauat.edu.cn
通讯作者:刘艳峰(1971-),男,教授,博士生导师,主要从事与建筑节能与可再生能源应用.E-mail:liuyanfeng@xjd.xauat.edu.cn
更新日期/Last Update: 2020-09-25