[1]牟压强,郭大进,马 永,等.环氧沥青超薄罩面层间抗剪强度的影响因素研究[J].西安建筑科技大学学报(自然科学版),2021,(02):208-216.[doi:10.15986/j.1006-7930.2021.02.009]
 MOU Yaqiang,GUO Dajin,MA Yong,et al.Research on influencing factors of shear strength between layers of epoxy asphalt ultra-thin overlay[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,(02):208-216.[doi:10.15986/j.1006-7930.2021.02.009]
点击复制

环氧沥青超薄罩面层间抗剪强度的影响因素研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2021年02期
页码:
208-216
栏目:
出版日期:
2021-04-28

文章信息/Info

Title:
Research on influencing factors of shear strength between layers of epoxy asphalt ultra-thin overlay
文章编号:
1006-7930(2021)02-0208-09
作者:
牟压强1郭大进1马 永2张林艳3赵雁宾2郭荣鑫1
(1.昆明理工大学 建筑工程学院,云南省土木工程防灾重点实验室,云南 昆明 650500; 2.云南宾南高速公路有限公司,云南 大理 671000; 3.云南大学 建筑与规划学院,云南 昆明 650504)
Author(s):
MOU Yaqiang1 GUO Dajin1 MA Yong2 ZHANG Linyan3 ZHAO Yanbin2 GUO Rongxin1
(1.Yunnan Key Laboratory of Disaster Reduction in Civil Engineering Faculty of Civil Engineering and Mechanics,Kunming University of Science and Technology,Kunming 650500,China;2.Yunnan Binnan Expressway Co.,Ltd.,Dali 671000,China;3.School of Architecture and Planning Yunnan University,Kunming 650504,China)
关键词:
超薄罩面 环氧沥青混合料 抗剪强度 热粘结 正交试验设计
Keywords:
ultra-thin cover epoxy asphalt mixture shear strength hot bonding orthogonal experimental design
分类号:
TU57+1
DOI:
10.15986/j.1006-7930.2021.02.009
文献标志码:
A
摘要:
为确定路面结构组合(A)、粘结方式(B)、黏结材料(C)及其交互作用(A×B,A×C,B×C)对沥青混凝土路面加铺环氧沥青超薄罩面层间抗剪强度影响的主次顺序和显著性,根据正交试验方法设计试验方案,开展了试验研究.利用自制可拆卸模具,采用轮碾成型机制备3种路面结构组合的复合试件,下面层为AC-20,上面层分别为SAC-13、SAC-10、AC-10.3种类型复合试件的层间界面情况分别为冷粘结无黏结材料、冷粘结有黏结材料、热粘结无黏结材料、热粘结有黏结材料.利用自行设计加工的45°斜剪夹具对复合试件进行常温斜剪试验.结果表明:相比于界面未做任何处理(冷粘结无黏结材料)的复合试件抗剪强度,黏结材料、热粘结以及两者的联合三种工艺对层间抗剪强度的平均增长率分别为29.5%、60.7%、94.1%; 三个因素及其交互作用对复合试件层间抗剪强度影响的主次顺序为:B、C、A、B×C、A×B、A×C; 其中A、B、C为高度显著因素,交互作用B×C为有一定影响因素,交互作用A×B、A×C为非显著因素.试验研究结果可为类似铺筑工程提供参考依据.
Abstract:
In order to determine the primary and secondary order and significance of the influence of pavement structure combination(A),bonding mode(B),bonding material(C)and their interaction(A×B,A×C,B×C)on the interlaminar shear strength of epoxy asphalt ultra-thin cover on asphalt concrete pavement,the experimental scheme was designed according to the orthogonal test method and the experimental research was carried out.Using self-made detachable molds, the composite specimens with three kinds of pavement structure combination were prepared by wheel roll forming machine, the lower layer are AC-20,and the upper layers are SAC-13,SAC-10,and AC-10,respectively.The interlaminar interfaces situation of the three types of composite specimens are as follows: cold bonded no-bonding material,cold bonded has a bonding material,hot bonded no-bonding material,and hot bonded has a bonding material.The composite specimen was subjected to oblique shear test at room temperature by using a self-designed and processed 45°oblique shear fixture.The results show that compared with the shear strength of the composite specimens without any interface treatment(cold bonded no-bonding material), the average shear strength growth rates of the three technology of bonding material, hot bonding and the combination of them are 29.5%,60.7% and 94.1%, respectively; The order of influence of the three factors and their interaction on the interlaminar shear strength of composite specimens is B,C,A,B×C,A×B,A×C;among them A,B and C are highly significant factors,interaction B×C is a certain influencing factor,and interaction A×B and A×C are non-significant factors.The experimental results can provide reference for similar paving engineering.

参考文献/References:

[1]吴后选,袁怡,邢成炜,等.新型高速公路沥青面层结构组合设计研究[J].中外公路,2017,37(6):55-60.
WU Houxuan, YUAN Yi, XING Chengwei,et al. Research on structural combination design of new expressway asphalt pavement[J].Journal of China &Foreign Highway,2017,37(6):55-60.
[2]李福普,陈景,严二虎.新型沥青路面结构在我国的应用研究[J].公路交通科技,2006(3):10-14.
LI Fupu, CHEN Jing, YAN Erhu. Study and application of new asphalt pavement structures in China[J].Journal of Highway and Transportation Research and Development, 2006(3):10-14.
[3]CHEN C, QIAN Z D, WANG Y Q. Design a thermosetting asphalt mixture for surfacing on orthotropic steel deck bridge[J].Advanced Materials Research, 2013, 652-654:1221-1225.
[4]延西利,张世平,白伟,等.沥青路面温度场的热量分析研究[J].公路交通科技,2014,31(8):7-12.
YAN Xili, ZHANG Shiping, BAI Wei, et al. Analysis on heat of temperature field of asphalt pavement[J].Journal of Highway and Transportation Research and Development, 2014,31(8):7-12.
[5]李嘉,董亮,张坚,等.UHPC-沥青薄面层环氧界面剂黏结性能试验[J].长安大学学报(自然科学版),2020,40(1):49-57.
LI Jia, DONG Liang, ZHANG Jian, et al. Experimental on bonding performances of UHPC-thin asphalt layer with epoxy adhesive agents for ultra-high performance composite bridge deck[J].Journal of Chang’an University(Natural Science Edition), 2020,40(1):49-57.
[6]李款,潘友强,张辉,等.钢桥面铺装用环氧沥青相容性研究进展[J].材料导报,2018,32(9):1534-1540.
LI Kuan, PAN Youqiang, ZHANG Hui, et al. Research progress of compatibility of epoxy asphalt for steel deck pavement[J].Materials Reports, 2018,32(9):1534-1540.
[7]丛培良.环氧沥青及其混合料的制备与性能研究[D].武汉:武汉理工大学,2009.
CONG Peiliang. Preparation and properties of epoxy asphalt and it’s mixture[D].Wuhan:Wuhan University of Technology, 2009.
[8]吴俊明,王伟,李少芳,等.环氧薄层铺装材料路用性能研究[J].公路,2016,61(10):225-228.
WU Junming, WANG Wei, LI Shaofang, et al. Study on road performance of epoxy thin layer pavement material[J].Highway, 2016,61(10):225-228.
[9]葛文璇,徐勋倩,高强,等.基于环氧沥青黏结层的混凝土桥面薄层铺装疲劳性能研究[J].公路,2012(7):18-23.
GE Wenxuan, XU Xunqian, GAO Qiang, et al. Study on fatigue performance of thin layer pavement of concrete bridge deck based on epoxy asphalt bonding layer[J].Highway, 2012(7):18-23.
[10]张争奇,陶晶,张思桐.桥面铺装环氧沥青防水粘结层性能试验与评价[J].长安大学学报(自然科学版),2011,31(4):1-6.
ZHANG Zhengqi, TAO Jin, ZHANG Sitong. Experiment and evaluation on performance of epoxy asphalt waterproof cohesive layer on bridge deck pavement[J].Journal of Chang’an University(Natural Science Edition), 2011,31(4):1-6.
[11]王浩,胡松山,任少博.薄层橡胶沥青复合式路面层间抗剪特性试验[J].长安大学学报(自然科学版),2018,38(4):29-38.
WANG Hao, HU Songshan, REN Shaobo. Shear resistance test of thin layer rubber asphalt pavement interlayer[J].Journal of Chang’an University(Natural Science Edition), 2018,38(4):29-38.
[12]刘梦梅,韩森,潘俊,等.水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J].材料导报,2018,32(10):1716-1720.
LIU Mengmei, HAN Sen, PAN Jun, et al. The adhesion performance of a waterborne epoxy resin emulsified asphalt: a study under high -& low-temperature and water-immersion environments[J].Materials Reports, 2018,32(10):1716-1720.
[13]李秋实,何东坡,丁海波.黏层对不同类型路面组合界面力学特性的影响[J].中国公路学报,2015,28(8):22-30.
LI Qiushi, HE Dongpo, DING Haibo. Effects of tack coat on mechanical properties of pavement interface with combination of different types[J].China Journal of Highway and Transport, 2015,28(8):22-30.
[14]汪水银.半刚性基层与沥青面层粘结性能影响因素[J].交通运输工程学报,2010,10(2):12-19.
WANG Shuiyin. Influence factors of bond performance between asphalt surface layer and semi-rigid base[J].Journal of Traffic and Transportation Engineering, 2010,10(2):12-19.
[15]DAS R, MOHAMMAD L N, ELSEIFI M, et al. Effects of tack coat application on interface bond strength and short-term pavement performance[J].Transportation Research Record Journal of the Transportation Research Board, 2017, 2633:1-8.
[16]LENG Z, OZER H, AL-QADI I, et al. Interface bonding between hot-mix asphalt and various portland cement concrete surfaces[J].Transportation Research Record, 2015, 11:46-53.
[17]刘红坡,邱延峻,蒋鑫.槽和黏层油对沥青混合料层间抗剪性能的影响[J].西南交通大学学报,2016,51(4):677-683.
LIU Hongpo, QIU Yanjun, JIANG Xin. Effect of notch and tack coat on the interface shear performance between asphalt layers[J].Journal of Southwest Jiaotong University, 2016,51(4):677-683.
[18]TASHMAN L, NAM K, PAPAGIANNAKIS T, et al. Evaluation of construction practices that influence the bond strength at the interface between pavement layers[J].Journal of Performance of Constructed Facilities, 2008, 22(3):154-161.
[19]王旭东,周兴业,关伟,等.沥青路面结构内部的力学响应特征及分析[J].科学通报,2020,65(30):3298-3307.
WANG Xudong, ZHOU Xingye, GUAN Wei, et al. Characteristics and analysis of the mechanical response inside the structure of asphalt pavement[J].Chinese Science Bulletin, 2020,65(30):3298-3307.
[20]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008:101-174.
QIU Yibing. Experimental design and data processing[M].Hefei: China University of science and Technology Press, 2008:101-174.
[21]封基良.一种化学改性热固性沥青混合料:中国, CN106495567B[P].2019-03-15.
FENG Jiliang. A kind of chemical modified thermosetting asphalt mixture:China, CN106495567B[P].2019-03-15.
[22]封志佼,郭大进,张林艳,等.后掺法环氧沥青OGFC混合料性能研究及对比分析[J].材料科学与工程学报,2020,38(4):633-637.
FENG Zhijiao, GUO Dajin, ZHANG Linyan, et al. Comparative study on performance of OGFC mixture of epoxy asphalt using post-doping method[J].Journal of Materials Science and Engineering, 2020,38(4):633-637.
[23]交通部公路科学研究所.公路沥青路面施工技术规范:JTG F40-2004[S].北京:人民交通出版社,2004:17-21.
Insititute of Highway Science,Ministry of communication. Technical specification for construction of highway asphalt pavements:JTG F40-2004[S].Beijing:Peoples’s Transportation Press, 2004:17-21.
[24]冉武平,凌建明,谷志峰.环氧沥青混合料低温性能及评价指标[J].西南交通大学学报,2017,52(5):935-942.
RAN Wuping, LING Jianming, GU Zhifeng. Low temperature performance and evaluation index of epoxy asphalt mixture[J].Journal of Southwest Jiaotong University, 2017,52(5):935-942.
[25]交通部公路科学研究所.公路工程沥青及沥青混合料试验规程:JTG E20-2011[S].北京:人民交通出版社,2011.197.
Insititute of Highway Science,Ministry of Communication. Standard test methods of bitumen and bituminous mixtures for highway engineering:JTG E20-2011[S].Beijing: Peoples’s Transportation Press, 2011.197.
[26]封基良.一种后掺法环氧沥青混合料施工工艺:中国,CN106351102A[P].2019-01-29.
FENG Jiliang. Construction technology of epoxy asphalt mixture with post mixing method: China,CN106351102B[P].2019-01-29.
[27]李嘉,王万鹏,裴必达,等.UHPC-TPO层间黏结性能研究[J].中国公路学报,2018,31(5):84-91.
LI Jia, WANG Wanpeng, PEI Bida, et al. Evaluation of bonding performances between UHPC and TPO[J].China Journal of Highway and Transport, 2018,31(5):84-91.
[28]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2011.
Lü Weimin. Design principle and method of asphalt mixture[M].Shanghai: Tongji University Press, 2011.
[29]毛昱,李萍,念腾飞,等.基于分形理论的沥青路面层间机械摩阻强度行为[J].吉林大学学报(工学版),2020,50(2):594-605.
MAO Yu, LI Ping, NIAN Tengfei, et al. Mechanical friction intensity behavior of asphalt pavement based on fractal theory[J].Journal of Jilin University(Engineering and Technology Edition), 2020,50(2):594-605.
(编辑 桂智刚)

备注/Memo

备注/Memo:
收稿日期:2020-11-01 修改稿日期:2021-03-22
基金项目:云南省交通科技项目(云交科教〔2017〕35号); 昆明理工大学分析测试基金项目(2019M20182210046)
第一作者:牟压强(1995-),男,硕士生,主要从事道路工程材料方面的研究.E-mail:5969085@qq.com
通信作者:张林艳(1975-),女,博士,主要从事道路新材料研发与应用方面的研究.E-mail:215337622@qq.com
更新日期/Last Update: 2021-04-28