[1]李涛,刘青霞,尤靖楠,等.室外综合温度的时空变化特征及影响因子分析[J].西安建筑科技大学学报(自然科学版),2023,55(06):905-911.[doi:10.15986/j.1006-7930.2023.06.014]
 LI Tao,LIU Qingxia,YOU Jingnan,et al.Analysis of variation characteristics and influencing factors of outdoor comprehensive temperature[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(06):905-911.[doi:10.15986/j.1006-7930.2023.06.014]
点击复制

室外综合温度的时空变化特征及影响因子分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年06期
页码:
905-911
栏目:
出版日期:
2023-12-28

文章信息/Info

Title:
Analysis of variation characteristics and influencing factors of outdoor comprehensive temperature
文章编号:
1006-7930(2023)06-0905-07
作者:
李涛12刘青霞1尤靖楠1毛前军1刘艳峰2
(1.武汉科技大学 城市建设学院,湖北 武汉 430065;2.绿色建筑国家重点实验室(XAUAT),陕西 西安 710055)
Author(s):
LI Tao12LIU Qingxia1YOU Jingnan1MAO Qianjun1LIU Yanfeng2
(1.School of Urban Construction, Wuhan University of Science and Technology,Wuhan 430065,China;2.State Key Laboratory of Green Building,Xi′an Univ. of Arch. & Tech., Xi′an 710055,China)
关键词:
室外综合温度室外空气温度太阳辐射强度基本耗热量朝向修正率
Keywords:
outdoor comprehensive temperatureoutdoor air temperaturesolar radiation intensitybasic heat consumptionorientation correction rate
分类号:
TU201
DOI:
10.15986/j.1006-7930.2023.06.014
文献标志码:
A
摘要:
依据典型年气象数据,从建筑围护结构的朝向、季节、地理纬度和海拔高度等方面,对室外综合温度的时间和空间变化特性进行了分析.研究发现到达围护结构外表面太阳辐射强度是室外综合温度产生朝向差异的直接因素,季节变化影响室外空气温度进而影响室外综合温度的大小;随纬度降低,各朝向室外综合温度逐渐增大,随海拔高度的增加,太阳辐射强度对室外综合温度的影响高于室外空气温度.以室外综合温度、采暖室外计算温度计算建筑围护结构基本耗热量,发现采用前者比后者计算得到的基本耗热量小314%,采用室外综合温度计算所得结果更接近实际值.研究成果可为掌握室外综合温度时空变化特性以及建筑围护结构采暖热负荷的计算提供依据.
Abstract:
Based on typical year meteorological data, the study analyzes the temporal and spatial variation characteristics of the outdoor integrated temperature from the orientation, season, geographic latitude and altitude of the building envelope. The results show that the solar radiation intensity reaching the outer surface of the envelope is a direct factor of the orientation difference of outdoor comprehensive temperature, and the changes of season affects the variations of the outdoor air temperature and then influence the outdoor comprehensive temperature. With the decreases of latitude, the outdoor comprehensive temperature increases gradually. With the increase of altitude, the influence of solar radiation intensity on outdoor comprehensive temperature is higher than that of outdoor air temperature. The basic heat consumption of building envelope is calculated by outdoor comprehensive temperature and outdoor heating temperature. It is found that the basic heat consumption calculated by the former is 31.4% lower than that calculated by the latter, and the results calculated by the outdoor comprehensive temperature is closer to the actual values. The researches can provide a basis for understanding the spatiotemporal variation of outdoor comprehensive temperature and calculating the heating heat load of building envelope.

参考文献/References:

[1]洪天真, 江亿. 冬季供暖系统负荷计算用的室外综合计算温度[J]. 暖通空调. 1993, 23(3):10-13, 9.

 HONG Tianzhen, JIANG Yi. Comprehensive outdoor temperature for calculation of heating system load in winter[J]. HVAC. 1993, 23(3):10-13, 9.
[2]杨柳, 齐静妍, 霍旭杰, 等. 气候变化对室外设计条件和冷负荷峰值的影响[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4): 463-471, 524.
 YANG Liu, QI Jingyan, HUO Xujie, et al. Impact of climate change outdoor design conditions and reduction in peak cooling loads[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(4): 463-471, 524.
[3]陈洁, 罗智星, 杨柳. 干热干冷地区室外综合温度计算模型适用性分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 439-444, 451.
 CHEN Jie, LUO Zhixing, YANG Liu. Applicability analysis of outdoor integrated temperature calculation model in dryhot and dry-cold areas[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(3): 439-444, 451.
[4]张方遒. 采暖热负荷朝向修正率的计算[J]. 煤气与热力, 2001, 21(1): 84,86.
 ZHANG Fangzun. Calculation of direction correction rate of heating heat load[J]. Gas and Heat, 2001, 21(1): 84, 86.
[5]刘艳峰, 王登甲, 张薇. 民用建筑围护结构负荷与节能朝向修正率[J]. 暖通空调, 2013, 43(2): 80-82.
 LIU Yanfeng, WANG Dengjia, ZHANG Wei. Civil building envelope structure load and energy-saving orientation correction rate[J]. HVAC, 2013, 43(2): 8082.
[6]吴继臣. 关于采暖热负荷朝向修正的研究[J]. 低温建筑技术, 2001(4): 40-42.
 WU Jichen. Research on the direction correction of heating load[J]. Low Temperature Building Technology, 2001(4): 4042.
[7]张大显. 西藏地区民用建筑采暖热负荷朝向修正率研究[D]. 西安:西安建筑科技大学, 2010.
 ZHANG Daxian. Research on the correction rate of heating load direction of civil buildings in Tibet[D]. Xi′an: Xi′an Univ. of Arch. & Tech., 2010.
[8]DAVID B, DANIEL S, ALEXIS P, et al. Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature[J]. Building and Environment, 2020, 170: 0360-1323.
[9]刘凌, 刘加平. 基于室外空气综合温度的墙体非对称式保温设计原理的应用分析研究[J]. 建筑科学, 2019, 35(8): 65-68, 75.
 LIU Ling, LIU Jiaping. Application analysis and research on the design principle of asymmetric wall insulation based on the comprehensive outdoor air temperature[J]. Building Science, 2019, 35(8): 65-68, 75.
[10]DANIELE T, EVA S, PAOLO C. Costoptimal sizing of solar thermal and photovoltaic systems for the heating and cooling needs of a nearly zero-energy building: Design methodology and model description[J]. Energy Procedia, 2016, 91: 517-527.
[11]TSILINGIRIS P T. On the transient thermal behaviour of structural walls:The combined effect of time varying solar radiation and ambient temperature[J]. Renewable Energy, 2002, 27(2): 319-336.
[12]钱文波, 罗清平. 典型功能房间空调负荷计算和分析[J]. 建筑工程技术与设计, 2017(19): 1192-1194.
 QIAN Wenbo,LUO Qingping. Calculation and analysis of air-conditioning load in typical functional rooms[J]. Construction Engineering Technology and Design, 2017(19): 1192-1194.
[13]AZKORRA-LARRINAGA Z, ERKOREKA-GONZ?LEZ A, FLORES-ABASCAL I, et al. Defining the cooling and heating solar efficiency of a building component skin: application to a modular living wall[J]. Applied Thermal Engineering, 2022, 210: 118403.
[14]魏园园, 杨锦涛. 太阳能在西藏地区民用建筑采暖工程中的应用——采暖热负荷朝向修正率研究[C]//第五届中国中西部地区土木建筑学术年会论文集. 乌鲁木齐:新疆大学出版社,2015: 337-344.
 WEI Yuanyuan, YANG Jintao. The application of solar energy in the heating engineering of civil buildings in Tibet[C]//Proceedings of the Fifth annual conference of civil engineering and architecture in China′s central and Western regions. Urumqi:Xinjiang University Press, 2015: 337-344.
[15]寿先方. 围护结构传热系数现场检测及热量传递过程分析[D]. 上海: 东华大学, 2015.
 SHOU Xianfang. Onsite detection of heat transfer coefficient of envelope structure and analysis of heat transfer process[D]. Shanghai: Donghua University, 2015.
[16]HIMANSHU D. Principles of energy conversion and noise characterization in air ventilation ducts exposed to solar radiation[J]. Applied Energy, 2019, 242: 1320-1345.
[17]桑国臣, 朱轶韵, 刘加平, 等. 拉萨地区节能墙体对室外综合温度扰量的频率响应[J]. 西安理工大学学报, 2011, 27(2): 177-184.
 SANG Guochen, ZHU Zhiyun, LIU Jiaping, et al. Frequency response of energysaving wall in Lhasa area to the disturbance of outdoor comprehensive temperature[J]. J. of Xi′an University of Technology, 2011, 27(2): 177-184.
[18]王磊, 方修睦. 环境空气综合温度研究[J].煤气与热力, 2019, 39(7): 28-32.
 WANG Lei, FANG Xiukui. Research on comprehensive temperature of ambient air[J]. Gas and Heat, 2019, 39(7): 28-32.
[19]陈莉, 方蕾, 李帅, 等. 用综合温度法进行建筑物采暖能耗模拟与估算初探[J]. 建筑节能, 2019, 47(7): 16-21.
 CHEN Li, FANG Lei, LI Shuai, et al. Preliminary study on simulation and estimation of building heating energy consumption with the equivalent temperature method[J]. Building Energy Efficiency, 2019, 47(7): 16-21.
[20]刘加平. 建筑物理[M]. 北京: 中国建筑工业出版社, 2009.
 LIU Jiaping. Building physics[M]. Beijing: China Architecture and Building Press, 2009.
[21]中国气象局气象信息中心室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
 Department of Building Technology and Science, Tsinghua University. Special meteorological data set for thermal environment analysis of buildings in China[M]. Beijing: China Architecture and Building Press, 2005.
[22]CUI Ying, YAN Da, HONG Tianzhen, et al. Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China[J]. Applied Energy, 2017, 195: 890-904.
[23]贺晓雷, 于贺军, 李建英, 等. 太阳方位角的公式求解及其应用[J]. 太阳能学报, 2008, 29(1): 69-73.
 HE Xiaolei, YU Hejun, LI Jianying, et al. Solving the formula of the sun′s azimuth angle and its application[J]. Acta Solar Energy, 2008, 29(1): 69-73.
[24]LIU Yanfeng, ZHOU Yong, WANG Dengjia, et al. Classification of solar radiation zones and general models for estimating the daily global solar radiation on horizontal surfaces in China[J]. Energy Conversion and Management, 2017, 154(15): 168-179.
[25]JAMEL Chakchak, NUMAN Sabit Cetin. Investigating the impact of weather parameters selection on the prediction of solar radiation under different genera of cloud cover: A case study in a subtropical location[J]. Measurement, 2021, 176: 109159.
[26]中华人民共和国住房和城乡建设部.严寒和寒冷地区居住建筑节能设计标准:JGJ26—2018[S]. 北京: 中国建筑工业出版社, 2018.
 Ministry of Housing and Urban-Rural Development of the People′s Republic of China.Design standard for energy efficiency of residential buildings in severe cold and cold zones:JGJ26—2018[S]. Beijing: China Architecture and Building Press, 2018.
[27]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.民用建筑供暖通风与空气调节设计规范:GB50736—2012[S]. 北京: 中国建筑工业出版社, 2012.
 Ministry of Housing and Urban-Rural Development of the People′s Republic of China, General Adnuinistration of Qualiey Supervision,Inspection and Quarantine of the People′s Republic of China.Design code for heating ventilation and air conditioning of civil buildings:GB50736—2012[S]. Beijing: China Architecture and Building Press, 2012.

相似文献/References:

[1]陈 洁,罗智星,杨 柳.干热干冷地区室外综合温度计算模型适用性分析[J].西安建筑科技大学学报(自然科学版),2021,53(03):439.[doi:10.15986/j.1006-7930.2021.03.016]
 CHEN Jie,LUO Zhixing,YANG Liu.Research on the applicability of sol-air temperature calculation model in dry-hot and dry-cold areas[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):439.[doi:10.15986/j.1006-7930.2021.03.016]

备注/Memo

备注/Memo:
收稿日期:2022-01-06修回日期:2023-11-16
基金项目:西部绿色建筑国家重点实验室开放基金项目(LSKF202105),国家自然科学基金项目(51876147)
第一作者:李涛(1988—),男,博士,讲师,主要从事太阳能热利用.E-mail:litao1001@wust.edu.cn
更新日期/Last Update: 2024-02-01