[1]赵 凡,方 海,梁志雯,等.纤维增强橡胶复合材料软体系统船撞吸能试验与模拟[J].西安建筑科技大学学报(自然科学版),2022,54(02):184-190.[doi:10.15986/j.1006-7930.2022.02.004]
 ZHAO Fan,FANG Hai,LIANG Zhiwen,et al.Experimental and numerical simulation on energy absorption in ship collision of fiber reinforced rubber composites soft body system[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(02):184-190.[doi:10.15986/j.1006-7930.2022.02.004]
点击复制

纤维增强橡胶复合材料软体系统船撞吸能试验与模拟()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年02期
页码:
184-190
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Experimental and numerical simulation on energy absorption in ship collision of fiber reinforced rubber composites soft body system
文章编号:
1006-7930(2022)02-0184-07
作者:
赵 凡1方 海1梁志雯2祝 露1韩 娟1王 盛1
(1.南京工业大学 土木工程学院,江苏 南京 211816; 2.江苏省交通工程建设局,江苏 南京 210004)
Author(s):
ZHAO Fan1 FANG Hai1 LIANG Zhiwen2 ZHU Lu1 HAN Juan1 WANG Sheng1
(1.College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China; 2.Jiangsu Provincial Transportion Engineering Construction Bureau, Nanjing 210004, China)
关键词:
纤维增强橡胶复合材料 撞击试验 破坏模式 吸能 数值模拟
Keywords:
fiber-reinforced rubber composite impact test failure mode energy-absorbing numerical simulation
分类号:
U443.26
DOI:
10.15986/j.1006-7930.2022.02.004
文献标志码:
A
摘要:
针对传统桥梁防撞措施造价高、难修复、削减船撞力有限、易造成船舶损毁等不足,本文提出了一种散粒体填充纤维增强橡胶复合材料软体系统,探究碰撞荷载作用下该系统的变形和吸能性能. 使用船艏模型分别对裸墩、设有散粒体填充纤维增强橡胶复合材料软体防撞系统的桥墩进行了水平撞击试验; 建立该系统的有限元模型对其破坏过程进行数值分析,并与试验结果对比. 试验结果表明:纤维增强橡胶复合材料软体在变形恢复和防破损方面具有显著的优势. 参数分析结果表明:直径300 mm、400 mm、500 mm纤维增强橡胶复合材料软体对撞击力的削减率分别为25.87%、42.08%、58.77%,软体直径对其撞击吸能性能有较大的影响.
Abstract:
In view of the shortcomings of traditional bridge anti-collision measures, such as high cost, high difficult of repair, and limited reduction of ship collision force, which is easy to cause ship damage, this article proposes a bulk-filled fiber-reinforced rubber soft collision avoidance system to explore the deformation and energy absorption performance of the device under impact loading. The horizontal impact tests of bare pier and pier with fiber-reinforced rubber soft body system are carried out by using ship bow model. The nonlinear finite element model of the system is established to numerically analyze its failure process, and the results are compared with the experimental results. The test results show that the fiber reinforced soft body has obvious advantages in deformation recovery and damage prevention. The results of numerical analysis show that the reduction rate of impact force of fiber reinforced rubber soft body with diameter of 300 mm, 400 mm and 500 mm is 25.87%, 42.08% and 58.77% respectively. The soft body diameter has a great influence on the impact energy absorption performance.

参考文献/References:

[1]谢兰捷, 郑振飞, 卓卫东. 泉州后渚大桥防撞岛结构试验与分析研究[J]. 福州大学学报(自然科学版), 2004(3): 349-352.
XIE Lanjie, ZHENG Zhenfei, ZHUO Weidong. Testing and analytical study on anti-collision island of Houzhu Bridge of Quanzhou[J]. Journal of Fuzhou University(Natural Science), 2004(3): 349-352.
[2]张景峰, 李小珍. 钢套箱-群桩组合防撞结构防撞性能仿真分析[J]. 桥梁建设, 2018, 48(6): 47-52.
ZHANG Jingfeng, LI Xiaozhen. Simulation analysis on anticollision property of steel fender box-pile group composite protective structure[J]. Bridge Construction, 2018, 48(6): 47-52.
[3]李干华, 王大展. 各种橡胶护舷防撞装置在修船码头的应用分析[J]. 广东造船, 2009, 28(6): 57-59.
LI Ganhua, WANG Dazhan. Application study on rubber fender in ship repair wharf[J]. Guangdong Shipbuilding, 2009, 28(6): 57-59.
[4]潘晋, 张敏, 许明财. 桥梁防船撞钢套箱的碰撞力快速估算[J]. 振动与冲击, 2014, 33(8): 66-71.
PAN Jin, ZHANG Min, XU Mingcai. Rapid estimation of collision force between a ship and a steel box for bridge protection[J]. Journal of Vibration and Shock, 2014, 33(8): 66-71.
[5]FAN W, YUAN W, CHEN BS. Steel fender limitations and improvements for bridge protection in ship collisions[J]. Journal of Bridge Engineering, 2015, 20(12): 1-9.
[6]贾恩实. 平潭海峡公铁两用大桥元洪航道桥V形防撞梁设计[J]. 桥梁建设, 2018, 48(3): 90-94.
JIA Enshi. Design of V-shaped anti-impact beam of Yuanhong ship channel bridge of Pingtan straits rail-cum-road bridge[J]. Bridge Construction, 2018, 48(3): 90-94.
[7]鲍莉霞, 刘赛博, 肖晨, 等. 桥梁防船撞波纹钢夹层吸能结构耐撞性研究[J]. 桥梁建设, 2019, 49(5): 57-62.
BAO Lixia, LIU Saibo, XIAO Chen, et al. Study of collision resistance of energy absorbing structure with corrugated steel sandwich panels used for ship collision protection of bridges[J]. Bridge Construction, 2019, 49(5): 57-62.
[8]刘伟庆, 方海, 祝露, 等. 船-桥碰撞力理论分析及复合材料防撞系统[J]. 东南大学学报(自然科学版), 2013, 43(5): 1080-1086.
LIU Weiqing, FANG Hai, ZHU Lu, et al. Ship-bridge collision force mechanism and composite anti-collision system[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(5): 1080-1086.
[9]FANG H, MAO Y, LIU WQ, et al. Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision[J]. Composite Structures, 2016, 158: 187-198.
[10]CHEN JY, FANG H, LIU WQ, et al. Energy absorption of foam-filled multi-cell composite panels under quasi-static compression[J]. Composites Part B, 2018, 153: 295-305.
[11]ZHU L, LIU WQ, FANG H, et al. Design and simulation of innovative foam-filled lattice composite bumper system for bridge protection in ship collisions[J]. Composites Part B, 2018, 157: 24-35.
[12]ZHANG J, SUPERNAK P, Mueller-Alander S, et al. Improving the bending strength and energy absorption of corrugated sandwich composite structure[J]. Material & Design, 2013, 52: 767-773.
[13]WU ZM, LIU WQ, WANG L, et al. Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading[J]. Composites Part B, 2014, 60: 329-340.
[14]项燕飞. 能量吸收材料与结构的评价指标[D]. 宁波: 宁波大学,2014.
XIANG Yanfei. Key performance Indicator(KPIs)of energy absorption of materials and structures[D]. Ningbo: Ningbo University, 2014.
[15]Ahmadi S A, Pashaei M H, Jafari-Talookolaei R A. Three-dimensional elastic-plastic pulse response and energy absorption of curved composite sandwich panel using DQ-Newmark method[J]. Engineering Structures, 2019, 189: 111-128.
[16]MITRA N, PATRA A, MONDAL S, et al. Interfacial delamination crack profile estimation in polymer foam-cored sandwich composites[J]. Engineering Structures, 2019, 189: 635-643.
[17]ZHANG Z, LEI H S, XU M C, et al. Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels[J]. Materials & Design, 2019, 178: 107858.
[18]杨渡军. 桥梁的防撞保护系统及其设计[M]. 北京: 人民交通出版社, 1990.
YANG Du-jun. Collision protection system of bridge an its design[M]. Beijing: China Communications Press, 1990.
[19]冒一锋, 刘伟庆, 周叮, 等.船桥碰撞时船艏的刚度简化模型[J]. 南京工业大学学报(自然科学版), 2015, 37(5): 67-72.
MAO Yifeng, LIU Weiqing, ZHOU Ding, et al. Stiffness simplified model of bow in ship bridge collision[J]. Journal of Nanjing Tech University(Natural Science Edition), 2015, 37(5): 67-72.

备注/Memo

备注/Memo:
收稿日期:2021-04-01修改稿日期:2021-04-20
基金项目:国家自然科学基金资助项目(52078248); 江苏省杰出青年基金资助项目(BK20190034); 湖南省交通运输厅科技进步与创新计划基金资助项目(201916)
第一作者:赵凡(1998—),男,硕士生,从事复合材料结构研究.E-mail:522422786@qq.com 通信作者:方海(1981—),男,博士,教授,从事复合材料结构研究.E-mail:fanghainjut@163.com
更新日期/Last Update: 2022-04-28