双层相变通风屋面的影响因素研究

(华中科技大学 环境科学与工程学院,湖北 武汉 430000)

相变通风屋面; 相变材料; 夜间通风; 动态热网模型; TRNSYS模拟

Study on the influencing factors of double-layer phase change ventilation roof
LENG Kangxin, YU Jinghua, YANG Qingchen, ZHAO Jingang

(School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430000, China)

phase change ventilation roof; phase change material; night ventilation; dynamic heating network model; TRNSYS simulation

DOI: 10.15986/j.1006-7930.2021.06.016

备注

在负荷模拟软件TRNSYS中建立了带有双层相变通风屋面的建筑模型,在以武汉市为代表的夏热冬冷地区气候条件下,分别研究了相变层相变温度范围、相变层厚度和通风速度对屋面热工性能的影响,并进行优化设计.从空调累积负荷、相变材料利用率和经济性因素考虑高温相变层的最佳相变温度范围为26~28 ℃,最佳厚度为30 mm,最佳通风速度为2~3 m/s,低温相变层的最佳相变温度范围为15~17 ℃,最佳厚度为20~30 mm.经过优化设计后,双层相变通风屋面与参照屋面相比,在供冷期的累积冷负荷可降低30.18%,在供热期的累积热负荷可降低33.92%.
In the load simulation software TRNSYS, a building model with a double-layer phase-change ventilated roof was established. Under the climatic conditions of hot summer and cold winter regions represented by Wuhan, the effects of phase-change temperature range, thickness of phase-change layer and ventilation speed on the thermal performance of the roof were studied, and the optimal design was carried out. Considering the cumulative load of the air conditioner, the utilization rate of phase change materials and economic factors, the optimal phase change temperature range of the high temperature phase change layer is 26~28 ℃, the optimal thickness is 30 mm, and the optimal ventilation speed is 2~3 m/s; the optimal phase change temperature range of the low-temperature phase change layer is 15~17 ℃, and the optimal thickness is 20~30 mm. After the optimization design, the cumulative cooling load of the double-layer phase change ventilation roof can be reduced by 30.18% in the cooling period and 33.92% in the heating period compared with the reference roof.