[1]李 亮,李国强.轴向均布荷载下弯剪型竖向悬臂杆的屈曲临界荷载简化算法[J].西安建筑科技大学学报:自然科学版,2013,45(06):817-821,828.[doi:10.15986/j.1006-7930.2013.06.011]
 LI Liang,LI Guo-qiang.Simplified algorithm of buckling critical load for shear-bending cantilever rounder axially uniformly distributed load[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(06):817-821,828.[doi:10.15986/j.1006-7930.2013.06.011]
点击复制

轴向均布荷载下弯剪型竖向悬臂杆的屈曲临界荷载简化算法()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
45
期数:
2013年06期
页码:
817-821,828
栏目:
出版日期:
2013-12-31

文章信息/Info

Title:
Simplified algorithm of buckling critical load for shear-bending cantilever rounder axially uniformly distributed load
文章编号:
1006-7930(2013)06-0817-05
作者:
李 亮1李国强2
(1.长安大学建筑工程学院,陕西 西安 710061; 2.同济大学土木工程防灾国家重点实验室,上海 200092)
Author(s):
LI Liang1LI Guo-qiang2
(1.College of Civil Engineering, Changan University, Xian 710061,China; 2.State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
关键词:
竖向悬臂杆边界条件三角函数弯曲分量屈曲临界荷载
Keywords:
vertical cantilever bar boundary conditions trigonometric function bending component buckling critical load
分类号:
TU 375.4
DOI:
10.15986/j.1006-7930.2013.06.011
文献标志码:
A
摘要:
根据竖向悬臂杆的边界条件、弯曲及剪切屈曲侧移曲线,选取了含有三角函数的表达式来近似表示竖向悬臂杆的弯曲分量和剪切分量,然后利用能量法推导了在轴向均布荷载作用下弯剪型悬臂杆的屈曲临界荷载简化计算公式.通过与有限元计算结果对比,验证了简化算法的可靠性.最后,将本文提出的竖向均布荷载作用下临界荷载计算公式与Timoshenko提出的顶点集中荷载下临界荷载经典理论公式进行对比, 发现本文提出的临界荷载计算公式多了一个无量纲的系数,通过参数分析,研究了该系数对公式计算精度的影响.
Abstract:
According to the boundary conditions, bending and shear buckling displacement curves of vertical cantilever bar, the trigonometric function expressions are selected to approximately express the bending component and shear component of the vertical cantilever rod. Then the energy method is used to deduce the buckling critical load calculation formula of the shear bending cantilever bar under vertical uniform loads, and the reliability of the simplified algorithm is verified by compare with the results of finite element calculation. Finally, the result comparison between the recommended formulas under vertical uniformly distributed load in this paper and the Timoshenko equation under top-concentrated load are conducted, and one dimensionless coefficient are recognized. Then the accuracy of the formula is verified through the parameter analysis

参考文献/References:

[1] 铁摩辛柯 S P. 弹 性稳定理论[M].2 版. 张 福范, 译. 北京: 科学出版社,1965.
TIMOSHENKO S P. Theory of elastic stability[M].2nd ed. ZHANG Fu-fan, translated. Beijing: Science press,1965.
[2] 李国强, 刘玉姝, 赵 欣. 钢结构框架体系高等分析与系统可靠度设计[M]. 北京: 中国建筑工业出版社, 2006.
LI Guo-qiang, LIU Yu-shu, ZHAO Xin. Higher analysis and reliability system design of the steel structure frame-work[M].Beijing: China building industry press, 2006.
[3] BAKKER M C M. Shear-flexural buckling of cantilever columns under uniformly distributed load [J].Journal of engineering mechanics,2006,132(11) :1160-1167.
[4] 李 亮, 李国强, 汪 利 . 水平荷载作用下新型钢 -混凝土混合结构简化计算方法[J]. 建筑科学与工程学报, 2013.30(4) :1-8.
LI Liang, LI Guo-qiang, WANG Li. Simplified Algorithm of the Multi-lateral Resistant Steel-concrete Mixed Structure under Lateral Load [J]. Journal of architecture and civil engineering, 2013.30(4) :1-8.
[5] LI Liang, LI Guo-qiang, LUI Yu-shu. Simplified Algorithm of the Novel Steel-concrete Mixed Structure under Lateral Load [J].International Journal of High-Rise Buildings, 2012,1(4) :247-254.
[6] 童根树. 钢结构的平面内稳定[M]. 北京: 中国建筑工业出版社,2005.
TONG Gen-shu. The in-plane stability of steel structure[M].Beijing: China building industry press, 2005.
[7] 刘开国 . 高层与大跨度结构简化分析技术及算例[M]. 北京:中国建筑工业出版社, 2006.
LIU Kai-guo. Simplify analysis and calculation examples of the tall and big span structure[ M].Beijing: China building industry press,2006.
[8] 李 亮. 多重新型钢-混凝土混合结构设计方法及抗震性能研究[D]. 上 海: 同济大学, 2011.
LI Liang. Design approach and seismic behavior study on novel multi-lateral resistant steel-concrete mixed structure[D].Shanghai: Tongji University, 2011.
[9] 刘 古岷, 张若晞, 张田申 . 应用结构稳定计算[M]. 北京: 科学出版社,2005.
LIU Gu-min, ZHANG Nuo-xi, ZHANG Tian-shen. Stability computation of application structure[M].Beijing: Science Press, 2005.

相似文献/References:

[1]侯炜 陈彬 蔡振玲 郭子熊.一种新型连梁拟静力加载方案及其试验验证[J].西安建筑科技大学学报:自然科学版,2017,49(02):207.[doi:10.15986/j.1003-7930.2017.02.008]
 HOU Wei,CHEN Bin,CHAI Zhenlin,et al.A new pseudo-static loading program of coupling beams and its test verification[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2017,49(06):207.[doi:10.15986/j.1003-7930.2017.02.008]
[2]康亚明,贾延,罗玉财,等.三轴压缩时岩石破裂面方位角理论值与实验值研究[J].西安建筑科技大学学报:自然科学版,2017,49(05):665.[doi:10.15986/j.1006-7930.2017.05.008]
 KANG Yaming,JIA Yan,LUO Yucai,et al.Research on the heoretical and experimental value of azimuth angle of the fracture surface for the rock subjected to triaxial Compression[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2017,49(06):665.[doi:10.15986/j.1006-7930.2017.05.008]
[3]康亚明,贾 延,罗玉财.立方体测混凝土抗压强度时的破裂形态与机制[J].西安建筑科技大学学报:自然科学版,2018,50(02):202.
 KANG Yaming,JIA Yan,LUO Yucai.Fracture morphology and mechanism of concrete cube test blocks subjected to compression failure[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2018,50(06):202.

备注/Memo

备注/Memo:
收稿日期:2013-07-31 修改稿日期:2013-11-25
基金项目:国家自然科学基金资助项目(51208057);中国博士后科学基金第六期特别资助项目(2013T60687)
作者简介:李 亮(1981-),男,讲师,博士,主要从事多高层钢结构及混合结构设计理论及抗震性能方面研究.
更新日期/Last Update: 2015-10-05