[1]宋战平、,杨腾添,张丹锋,等.溶洞对隧道(洞)稳定性影响的数值试验及现场监测分析[J].西安建筑科技大学学报:自然科学版,2014,46(04):484-491.[doi:10.15986/j.1006-7930.2014.04.005]
 SONG Zhanping YANG TengtianZHANG DanfengLI Ning.Experiments and field monitoring and analysis about the impact of existing cave on the stability of the tunnel[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(04):484-491.[doi:10.15986/j.1006-7930.2014.04.005]
点击复制

溶洞对隧道(洞)稳定性影响的数值试验及现场监测分析()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年04期
页码:
484-491
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
Experiments and field monitoring and analysis about the impact of existing cave on the stability of the tunnel
文章编号:
1006-7930(2014)04-0484-08
作者:
宋战平1、2杨腾添1张丹锋1李 宁3
(1. 西安建筑科技大学土木工程学院,陕西 西安 710055;2. 中铁十三局集团有限公司,天津 300300; 3.西安理工大学水电学院, 陕西 西安 710048)
Author(s):
SONG Zhanping 12 YANG Tengtian1ZHANG Danfeng1LI Ning 3
(1. School of Civil Eng., Xi’an Univ. of Arch. & Tech. , Xi’an 710055, China2. China Railway 13th Bureau Group Co., LTD., Tianjing 3003003. Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China)
关键词:
隧道工程溶洞稳定性现场测试数值分析
Keywords:
tunnel engineering existing cave stability site testing numerical analysis
分类号:
U456
DOI:
10.15986/j.1006-7930.2014.04.005
文献标志码:
A
摘要:
依托武都水库的导流隧洞工程建设,就既有岩溶溶洞对隧道(洞)稳定性的影响进行了跟踪现场施工的动态监测及数值 模拟分析,就不同位置及尺寸的既有溶洞对隧道(洞)围岩受力、变形以及支护结构的受力特性的变化进行了深入研究.既有溶洞影响的数值模拟和现场监测分析表明:受顶部既有岩溶溶洞的影响,隧道(洞)围岩的变形特性明显不同于无溶洞时的变形特性,其围岩超前掌子面的先期变形量增加,即围岩位移具有明显的超前释放性.就变形量而言,当既有溶洞的尺寸大于隧洞最大跨度时,既有顶部溶洞将引起隧道(洞)顶拱沉降位移的减小,而当既有溶洞尺寸大于隧道(洞)的最大尺寸时,隧道(洞) 顶拱位移反而增加.同时,既有顶部溶洞将引起隧道(洞)水平收敛位移的增加,且位移的增加量随着既有溶洞尺寸的增加而随之增加.隧道(洞)边墙附近的既有侧边溶洞的出现将引起隧道(洞)水平收敛位移的增加,且位移的增加量随着既有溶洞尺寸的增加而增加.就支护结构受力特性而言,隧道(洞)边墙附近的既有溶洞的存在造成隧道(洞)近溶洞一侧喷层轴力的减小, 而远离溶洞一侧喷层轴力的增加.
Abstract:
based on the construction of Wudu reservoir diversion tunnel, this paper make a situ measurement of the tunnel under the impact of concealed cave When the tunnel is under construction, the change of about tunnel’s surrounding rock stress, displacement, and supporting structural state under the impact of the different cave are analyzed and field observations with numerical results were compared. The analysis showed that: (1) Under the impact of the cave at the top, the deformation of tunnel surrounding rock ahead release. Under the impact of the cave aside, tunnel horizontal convergence displacement increase; and will increase the amount of displacement increases along with the increase of the cave diameter. (2) Under the impact of the cave at the top, the displacement of the top of the tunnel arch settlement will reduce when the cave diameter is larger than the tunnel span, and the displacement of the top of the tunnel arch settlement will increase when diameter ratio is less than 1.0 ;A affected by the cave at the top ,the horizontal displacement of the tunnel will increase; and the impact of the cave diameter increase in caves also increases. (3) When the tunnel sidewall nearby the cave, tunnel periphery near cave side spray layer axial force will cause the cave side spray layer axial force to increase. (4) The change of the cave tunnel surrounding rock stress and characteristics of displacement with the results of numerical experiments are consistent. Therefore, the results of the theoretical analysis and numerical analysis show that the change about the impact of the cave tunnel surrounding rock displacement and stress become less. But in-situ measurement , the joint fissures of rock mass cave’s scale and the behavior change have an effect on the result . Due to the impact of the cave , the extent and scope of the cave of the field measurement of tunnel surrounding rock stress and displacement by field measurement is lower than the numerical analysis results by 20% to 30%. The impact of the cave on the supporting structure internal force is 20% larger than the numerical analysis results.

参考文献/References:

[1] 刘招伟, 张民庆. 隧道深埋充填型溶洞注浆施工技术探讨[J]. 隧道建设, 2003, 23(5): 48-51.

LIU Zhaowei, ZHANG Minqing. Strengthening technique by grouting with filling silty clay for deep burying karst cave in Yuanliangshan tunnel[J]. Tunnel Construction, 2003, 23(5): 48-51.

[2] 邹成杰. 水利水电岩溶工程地质[M]. 北京: 水利电力出版社, 1994.

ZOU Chengjie. Water resources and hydro-power karst engineering geology[M]. Beijing: Water Power Press, 1994.

[3] 余 波. 深理隧洞中的岩溶地基工程地质问题及地基处理[J]. 岩石力学与工程程学报, 2001, 20(3): 403-407

YU Bo. Engineering geology problem of karst foundation with tunnel and treatment of the foundation [J]. Journal of Rock Mechanics and Engineering, 2001, 20(3): 403-407

[4] 汪从锦. 鲁布革电站引水隧洞的岩溶发育特征及其工程意义[J]. 中国岩溶, 1991, 12(4): 715-719

WANG Congjin. Karst development and constructional significance of the lubuge power tunnel [J]. Carsologica Sinica, 1991, 12(4):715-719.

[5] 石新栋. 圆梁山隧道主要工程地质及施工对策[J]. 隧道建设, 2004, 25(4): 72-74.

SHI Xindong. The main problems and countermeasures of engineering geology of Yuanliangshan tunnel[J]. Tunnel Countruction, 2004, 25(4):72-74.

[6] 徐则民, 黄润秋. 深埋特长隧道及其施工地质灾害[M]. 成都: 西南交通大学出版社, 2000.

XU Zemin, HUANG Runqiu. Deep and long tunnel and its construction of geological disasters[M].Chengdu: Southwest jiaotong University Press, 2000.

[7] 程建铝, 宋战平. 喀斯特地区铁路隧道工程地质灾害研究初探-以宜(昌)万(州)铁路金子山岩溶隧道为例[J]. 水利与建筑工程学报, 2006, 4(3):18-21.

CHENG Jianlü, SONG Zhanping. Research on geologic disaster of railway tunnel in karst zone-taking Jinzishan karst tunnel of Yiwan railway for example[J]. Journal of Water Resources and Architectural Engineering, 2006, 4(3):18-21.

[8] 傅鹤林. 隧道衬砌荷载计算理论及岩溶处治技术[M].长沙: 中南大学出版社, 2005.

FU Helin. The tunnel lining theoretical load and karst treatment technology[M]. Changsha: Central South University Press, 2005.

[9] BUTTON E, BRETTEREBNER H, SCHWAB P. The application of TRT-true reflection tomography at the Unterwald tunnel in Felsbau[J]. Geophysics, 2002, 20(2): 51-56.

[10] 宋战平, 綦彦波, 赵国祝, 等. 岩溶隧道施工关键技术及工程应用研究[M]. 西安: 陕西科学技术出版社, 2013.

SONG Zhanping, QI Yanbo, ZHAO Guozhu, et al. Research on the Key Technologies of the Large Tunnel Construction Under Complex Geology [M]. Xi’an: Shaanxi science and technology, 2013.

[11] BROOKS J W. Applications of GPR technology to humanitarian demising operations in Cambodia: some lessons learned[R]. Memorial University: Brooks Enterprises International, Inc., 1996.

[12] 吴梦军, 许锡宾, 赵明阶, 等. 岩溶地区公路隧道施工力学响应研究[J]. 岩石力学与工程学报, 2004, 23(9): 1525-1529

WU Mengjun, XU Xibin, ZHAO Mingjie, et al. Construction mechanics response study of highway tunnel in karst[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1525-1529.

[13] 宋战平. 隐伏溶洞对隧道围岩-支护结构稳定性的影响研究[D]. 西安: 西安理工大学, 2006.

SONG Zhanping. Research on the influence of concealed karst caverns upon the stability of tunnels and its support structure [D]. Xi’an: Xi’an University of Technology, 2006.

[14] SONG Zhanping, JIANG Annan. Numerical simulation for large section tunnel based on stress mapping return arithmetic and loading releasing method [C].//2011 Applied Mechanics and Materials (Frontiers of Green Building, Materials and Civil Engineering), Shangri-La: Hong Kong Industrial Technology Research Centre, 2011.

[15] 赵明阶, 刘绪华, 敖建华, 等. 隧道顶部岩溶对围岩稳定性影响的数值分析[J]. 岩土力学, 2003, 24(3): 445-449

ZHAO Mingjie, LIU Xuhua, AO Jianhua, et al. Numerical analysis of influence of karst caves in top of tunnel on stability of surrounding rock masses[J]. Rock and Soil Mechanics, 2003, 24(3): 445-449.

[16] 张岩, 李宁. 多因素对高温隧洞稳定性的影响[J]. 西北农林科技大学:自然科学版, 2012, 40(2):219-226.

ZHAN Yan, LI Ning. Influence of various factors on tunnel stability in temperature field[J]. Journal of Northwest A & F University: Natural Science Edition, 2012, 40(2): 219-226.

[17] 宋战平, 党宏斌, 李宁. 既有溶洞对隧道围岩位移特征影响的数值试验[J].长江科学院院报, 2008, 25(5):79-83.

SONG Zhanping, DANG Hongbin, LI Ning. Numerical experimentation of influence of karst cave on displacement characteristics of rock mass[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(5):79-83.

相似文献/References:

[1]宋战平,刘 京,吴焕通,等.长陡斜井钢纤维喷射混凝土单层衬砌试验研究[J].西安建筑科技大学学报:自然科学版,2013,45(03):348.[doi:10.15986/j.1006-7930.2013.03.008]
 SONG Zhan-ping,LIU Jing,WU Huan-Tong,et al.Experimental research on single-layer tunnel lining of steel fiber shotcrete and the application in motenlin deviated well[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(04):348.[doi:10.15986/j.1006-7930.2013.03.008]
[2]张新柳.基于超前预报信息的隧道围岩分级及工程应用研究[J].西安建筑科技大学学报:自然科学版,2016,48(05):648.[doi:10.15986/j.1006-7930.2016.05.006]
 ZHANG Xinliu.Study on the classification and application of the tunnel s surrounding rock based on geological information forecast[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(04):648.[doi:10.15986/j.1006-7930.2016.05.006]
[3]宋战平,李世豪,张学钢,等.基于修正Peck法的隧道施工全地层变形规律研究[J].西安建筑科技大学学报:自然科学版,2018,50(02):190.[doi:10.15986/j.1006-7930.2018.02.006]
 SONG ZhanpingLI ShihaoZHANG XuegangWANG JunbaoWANG Tao.Study on strata settlement regular pattern induced by[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2018,50(04):190.[doi:10.15986/j.1006-7930.2018.02.006]
[4]宋战平,张 强,赵克明,等.基于现场监测及数值分析的隧道双导洞超前施工优化研究[J].西安建筑科技大学学报:自然科学版,2018,50(05):654.[doi:10.15986/j.1006-7930.2018.05.006]
 SONG Zhanping,ZHANG Qiang,ZHAO Keming,et al.Optimization study of advanced double-drift tunnel construction based on on-site monitoring and numerical analysis[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2018,50(04):654.[doi:10.15986/j.1006-7930.2018.05.006]
[5]王家滨,牛荻涛.硝酸侵蚀喷射混凝土NO-3扩散研究[J].西安建筑科技大学学报:自然科学版,2019,51(01):75.[doi:10.15986/j.1006-7930.2019.01.012]
 WANG Jiabin,NIU Ditao.Study on nitrate ion diffusion of lining shotcrete exposed to nitric acid[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2019,51(04):75.[doi:10.15986/j.1006-7930.2019.01.012]
[6]黄金,赵淼.基于贝叶斯网络的隧道围岩失稳风险分析[J].西安建筑科技大学学报:自然科学版,2019,51(04):545.[doi:10.15986/j.1006-7930.2019.04.012]
 HUANG Jin,ZHAO Miao.Risk analysis of tunnel surrounding rock based on Bayesian network[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2019,51(04):545.[doi:10.15986/j.1006-7930.2019.04.012]
[7]牛泽林,刘朝鹏,郑 蕾,等.大断面公路板岩隧道开挖与支护数值模拟研究[J].西安建筑科技大学学报:自然科学版,2020,52(03):376.[doi:10.15986/j.1006-7930.2020.03.010]
 NIU ZeLin,LIU Chaopeng,ZHENG Lei,et al.Numerical simulation study on excavation and support of slab tunnel in large section highway[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2020,52(04):376.[doi:10.15986/j.1006-7930.2020.03.010]
[8]周 文.下穿既有运营公路大断面浅埋隧道方案优选及监测分析[J].西安建筑科技大学学报:自然科学版,2020,52(04):520.[doi:10.15986-j.1006-7930.2020.04.008]
 ZHOU Wen.Scheme optimization and monitoring analysis of large section shallow buried tunnel on existing highway[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2020,52(04):520.[doi:10.15986-j.1006-7930.2020.04.008]
[9]刘彦涛.下穿寺庙隧道爆破振动影响的数值模拟与分析[J].西安建筑科技大学学报:自然科学版,2021,53(02):160.[doi:10.15986/j.1006-7930.2021.02.002]
 LIU Yantao.Numerical simulation and analysis of the influence of blasting vibration in the tunnel crossing under a temple[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2021,53(04):160.[doi:10.15986/j.1006-7930.2021.02.002]
[10]宋战平,王双院,苏春生,等.黄土地层浅埋小净距非对称断面隧道施工方案优化[J].西安建筑科技大学学报:自然科学版,2022,54(05):646.[doi:10.15986/j.1006-7930.2022.05.002 ]
 SONG Zhanping,WANG Shuangyuan,et al.Optimization of construction scheme for shallow buried tunnel with small spacing asymmetric section in loess stratum[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2022,54(04):646.[doi:10.15986/j.1006-7930.2022.05.002 ]

备注/Memo

备注/Memo:
基金项目:西部交通项目(200831800030)
收稿日期:2013-12-26 修改稿日期:2014-07-28
作者简介:宋战平(1974-),男,博士,副教授,主要从事岩土工程、隧道与地下工程方面的研究. E-mail:songzhpyt@xauat.edu.cn
更新日期/Last Update: 2015-10-06