[1]杨 柳,杨 雯,郑武幸,等.风扇对亚热带气候区民居室内热环境影响分析[J].西安建筑科技大学学报(自然科学版),2016,48(04):544-550.[doi:10.15986/j.1006-7930.2016.04. 014]
 YANG Liu,YANG Wen,ZHENG Wuxing,et al.The impact of the fan on rural residential buildings indoor thermal environment in subtropical climate zone[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):544-550.[doi:10.15986/j.1006-7930.2016.04. 014]
点击复制

风扇对亚热带气候区民居室内热环境影响分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
48
期数:
2016年04期
页码:
544-550
栏目:
出版日期:
2016-08-31

文章信息/Info

Title:
The impact of the fan on rural residential buildings indoor thermal environment in subtropical climate zone
文章编号:
1006-7930(2016)04-0544-07
作者:
杨 柳杨 雯郑武幸 刘加平
(西安建筑科技大学建筑学院,陕西 西安,710055)
Author(s):
YANG Liu YANG Wen ZHENG Wuxing LIU Jiaping
(School of Architecture, Xi’an Univ. of Arch. & Techn., Xi’an 710055, China)
关键词:
风扇室内热环境民居适应性模型可接受温度范围亚热带气候区
Keywords:
fans indoor thermal environment rural residential buildings adaptive model acceptable temperature range subtropical climate zone
分类号:
TU831.1
DOI:
10.15986/j.1006-7930.2016.04. 014
文献标志码:
A
摘要:
亚热带气候区具有高温高湿的气候特点,为了延长自然通风模式、减少空调使用、降低能耗,风扇调节在室内通风调节中的比重日益增加,因此,风扇对农村居住者主观热舒适性和感知空气质量的影响起到了不可忽视的作用.为研究自然运行住宅建筑在使用风扇状态(FC模式),和未使用风扇状态(NFC模式)的人体热适应规律,确定评估这种建筑居住者热感觉的最佳方法,选取亚热带气候代表城市中国三亚和北海进行了热舒适现场调查.使用SPSS软件学对调研结果进行统计回归分析,利用ASHRAE 55标准与中国GB/T 50785中建立的适应性模型对分析结果进行评估比较.结果表明:当TSV为1.9,体感温度为31.6℃,室外空气温度为32.68℃时,风扇的室内热环境调节作用受到了较大限制;两种模式下TSV和PMV随温度变化的规律存在明显差异;利用适应性模型(aPMV)GB/T 50785规定值有所差异;相较于GB/T 50785,通过ASHRAE 55适应性模型获得的的评估结果与问卷主观结果更加一致,因此ASHRAE 55适应性模型被认为更适用于评价亚热带气候区使用风扇的自然运行状态民居的室内热湿环境;通过对获取数据按温度段进行回归分析,得到室外温度下满意率为80%和90%的可接受温度范围上限.
Abstract:
For the extension of natural ventilation mode, reduction of air conditioning use and energy consumption, the indoors ventilation is increasingly adjusted by fans in subtropical climate zone featured with high temperature and humidity. Therefore, fans play a vital role in the subjective comfort and perceived air quality for rural occupants. To clarify the controversy whether the adaptive comfort model is applicable in these buildings, study human thermal adaptation rules in fan condition(FC pattern) and no-fan condition(NFC pattern) residential buildings, and find out a suitable method to evaluate thermal sensation of occupants, an approach of field survey of thermal comfort has been carried out in Sanya and Beihai in China, which is the representative of subtropical climate. Software of SPSS was adopted in analyzing the statistical data of investigation. Both adaptive thermal comfort model based on ASHRAE 55 and adaptive PMV model (aPMV) based on GB/T 50785 Evaluation standard for indoor thermal environment in civil buildings in China are utilized to evaluate the results. It shows that with the increase of TSV, the change sensitivity of TCV and Thermal Adaptability in FC pattern is significantly greater than those in NFC pattern. There exist obvious differences in the relationship of TSV, PMV and temperature in two patterns. The adaptive coefficient value (λ) calculated by a PMV model with NFC and FC pattern is 0.12 and 0.43, which varied from GB/T 50785. Compared to the aPMV, the evaluation results obtained from the adaptive comfort model based on ASHRAE 55 are more consistent with the subjective questionnaire results. The adaptive comfort model based on ASHRAE 55 was found to be applicable to evaluate the thermal environment of natural-condition residential buildings with fans in subtropical climate zone. Regressing data by temperature range, the acceptable temperature of 80% & 90%(upper limit) was determined according to outdoor air temperature changes

参考文献/References:

References
[1] KUWAMURA H, AKIYAMA H. Brittle fracture under repeated high stresses [J]. Journal of Constructional Steel Research, 1994, 29 (1-3): 5-19.
[2] TATEISHI K, HANJI T, MINAMI K. A prediction model for extremely low cycle fatigue strength of structural steel [J]. International Journal of Fatigue, 2007, 29(6): 887-896.
[3] KANVINDE A M, DEIERLEIN G G. Micromechanical simulation of earthquake-induced fracture in steel structures. Technical Rep. 145, John A. Blume Earthquake Engineering Center, Stanford University, Calif, 2004.
[4] HANCOCK J W, MACKENZIE A C. On the mechanics of ductile failure in high-strength steel subjected to multi-axial stress states [J]. Journal of the Mechanics and Physics of Solids, 1976, 24(3): 147–169.
[5] RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201–217.
[6] KANVINDE A M, DEIERLEIN G G. Prediction of Ductile Fracture in Steel Moment Connections During Earthquakes Using Micromechanical Fracture Models. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 297, 2004.
[7] KANVINDE A M, DEIERLEIN G G. Void Growth Model and Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels [J]. Journal of Structural Engeering, ASCE, 2006, 132(12): 1907-1918.
[8] KANVINDE A M, DEIERLEIN G G. Finite-Element Simulation of Ductile Fracture in Reduced Section Pull-Plates Using Micromechanics-Based Fracture Models [J]. Journal of Structural Engeering, ASCE, 2007, 133(5): 656–664.
[9] KANVINDE A M, FELL B V, GOMEZ I R, et al. Predicting fracture in structural fillet welds using traditional and micromechanical fracture models [J]. Engineering Structures, 30(2008): 3325-3335.10] LIAO F F, WANG W, CHEN Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels [J]. Structural Engineering and Mechanics, 2012, 42(2): 153-174.

相似文献/References:

[1]何 泉,刘大龙,朱新荣,等.川西高原藏族民居室内热环境测试研究[J].西安建筑科技大学学报(自然科学版),2015,47(03):402.[doi:10.15986/j.1006-7930.2015.03.017]
 HE Quan,LIU Dalong,ZHU Xinrong,et al.Study on measuring the indoor thermal environment of Tibetan vernacular houses on the Chuanxi Plateau[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(04):402.[doi:10.15986/j.1006-7930.2015.03.017]
[2]刘艳峰,陈迎亚,王登甲,等.垂直绿化对室内热环境影响测试研究[J].西安建筑科技大学学报(自然科学版),2015,47(03):423.[doi:10.15986/j.1006-7930.2015.03.021]
 LIU Yanfeng,CHEN Yingya,WANG Dengjia,et al.Research of vertical green impact on the indoor thermal environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(04):423.[doi:10.15986/j.1006-7930.2015.03.021]
[3]赵西平,王成林.商业建筑冬季室内热舒适度研究分析[J].西安建筑科技大学学报(自然科学版),2013,45(02):264.[doi:10.15986/j.1006-7930.2013.02.018]
 ZHAO Xi-ping,WANG Cheng-lin.Analysis on thermal comfort in the commercial complex[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(04):264.[doi:10.15986/j.1006-7930.2013.02.018]
[4]狄育慧,林 鹏,王智鹏.绿色生态墙建筑室内热环境分析[J].西安建筑科技大学学报(自然科学版),2014,46(04):553.[doi:10.15986/j.1006-7930.2014.04.017]
 DI YuhuiLIN PengWANG Zhipeng.Analysis of eco-green wall building’s indoor thermal environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):553.[doi:10.15986/j.1006-7930.2014.04.017]
[5]刘大龙,张习龙,杨 柳,等.康巴藏区传统民居冬季热环境[J].西安建筑科技大学学报(自然科学版),2016,48(02):254.[doi:10.15986/j.1006-7930.2016.02.018]
 LIU Dalong,ZHANG Xilong,YANG Liu,et al.Winter thermal environment of traditional folk house in Kangba Tibetan area[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):254.[doi:10.15986/j.1006-7930.2016.02.018]
[6]王雪,杨柳,刘加平,等.陕南山地民居夏季室内热环境与能耗特性[J].西安建筑科技大学学报(自然科学版),2018,50(04):563.[doi:10.15986/j.1006-7930.2018.04.015]
 WANG Xue,YANG Liu,LIU Jiaping,et al.Indoor thermal environment and energy consumption characteristics of folk houses in mountainous region in Southern Shaanxi in summer[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):563.[doi:10.15986/j.1006-7930.2018.04.015]
[7]刘艳峰,胡筱雪,周勇,等.拉萨新民居建筑冬季室内热环境影响因素分析[J].西安建筑科技大学学报(自然科学版),2019,51(01):109.[doi:10.15986/j.1006-7930.2019.01.017]
 LIU YanfengHU XiaoxueZHOU YongWANG DengjiaHU Wei.Analysis on influence factors of indoor thermal environment of new residential buildings in winter in Lhasa[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):109.[doi:10.15986/j.1006-7930.2019.01.017]
[8]李金平,王兆福,王航,等.严寒地区主被动太阳能协同采暖室内舒适度研究[J].西安建筑科技大学学报(自然科学版),2019,51(04):584.[doi:10.15986/j.1006-7930.2019.04.017]
 LI JinpingWANG ZhaofuWANG HangHUANG Juanjuan WANG Chunlong.Research on indoor comfort of active and passive solar cooperative heating in cold Tibetan region[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):584.[doi:10.15986/j.1006-7930.2019.04.017]
[9]李雪平,崔羽.关中地区下沉式窑洞冬季室内热环境测试研究[J].西安建筑科技大学学报(自然科学版),2019,51(04):591.[doi:10.15986/j.1006-7930.2019.04.018]
 LI Xueping,CUI Yu.Field study on indoor thermal environment of sinking cave in Guanzhong Area in winter[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):591.[doi:10.15986/j.1006-7930.2019.04.018]

备注/Memo

备注/Memo:
收稿日期:2015-11-20 修改稿日期:2016-08-15
基金项目:国家自然科学基金创新群体项目(51221865);国家杰出青年科学基金项目(51325803);陕西省重点科技创新团队项目(2012KCT-11)
作者简介:杨柳(1970?),女,教授,主要从事建筑气候与建筑节能.E-mail:yangliu@xauat.edu.cn
更新日期/Last Update: 2016-10-30