[1]赵安军,于军琪,孙 光.基于双线性模型的室内环境品质控制建模方法研究[J].西安建筑科技大学学报(自然科学版),2017,49(01):145-149.[doi:10.15986/j.1006-7930.2017.01.024]
 ZHAO Anjun,YU Junqi,SUN Guang.Study on modeling of indoor environmental quality control by bilinear model[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(01):145-149.[doi:10.15986/j.1006-7930.2017.01.024]
点击复制

基于双线性模型的室内环境品质控制建模方法研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年01期
页码:
145-149
栏目:
出版日期:
2017-03-03

文章信息/Info

Title:
Study on modeling of indoor environmental quality control by bilinear model
文章编号:
1006-7930(2017)01-0145-05
作者:
赵安军于军琪孙 光
(西安建筑科技大学信息与控制工程学院,陕西 西安 710055 )
Author(s):
ZHAO Anjun YU Junqi SUN Guang
(School of Information and Control Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China)
关键词:
室内环境品质最小二乘估计双线性模型
Keywords:
indoor environmental quality the least squares estimation bilinear model
分类号:
TU111.19
DOI:
10.15986/j.1006-7930.2017.01.024
文献标志码:
A
摘要:
在现代建筑中,需对建筑室内环境品质进行有效的控制和优化来确保较高的舒适性和较低的能耗.室内环境品质包含了很多不确定因素和非线性因素,传统的线性系统无法对其描述.以西安建筑科技大学智能建筑实验室为研究对象,定义室内环境品质各物理参数和控制量的线性关系,采用双线性模型建模方法,建立室内环境品质控制与优化数学模型.基于研究对象的实测数据,通过最小二乘估计方法对其进行辨识,完成了数学模型中相关参数的求解.实验结果显示,在相同室内外环境条件下,实验采集的室内环境品质参数与模型输出参数吻合度高,验证了建模方法的有效性.
Abstract:
In modern architecture, it is necessary to control and optimize the quality of indoor environment to ensure the high comfort and low energy co nsumption. Indoor environmental quality that contains a lot of uncertainties and nonlinear factors is difficult to be described in the traditional linear system. This paper takes the intelligent building laboratory of Xi’an University of Architecture And Technology as the research object. Based on linear relationship between the physical parameters and control parameters of the indoor environmental quality by using bilinear model, the least squares estimation is performed to identify the indoor environmental quality control and energy consumption optimization modeling according to the data measured. Experiment results demonstrate the effectiveness of the modeling method.

参考文献/References:

[1] CORGNATI SP , FILIPPI M, VIAZZO S. Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort[J]. Building & Environment, 2007, 42 (2): 951 -959.

[2] 李百战,刘晶,姚瑞明.重庆地区冬季教室热环境调查分析[J]. 暖通空调,2007,37(5): 115-117.

LI Baizhan, LIU Jing, YAO Ruiming. Investigation and analysis on classroom thermal environment in winter in Chongqing[J]. Journal of HV&AC, 2007, 37(5): 115-117.

[3] MAYNE DQ. Model predictive control: Recent developments and future promise [J]. Automatica, 2014, 50 (12): 2967-2986.

[4] 席裕庚,李德伟,林姝. 模型预测控制—现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.

XI Yugeng, LI Dewei, LIN Shu. Model Predictive Control-Status and Challenges [J]. Acta Automatica Sinica, 2013, 39(3): 222-236.

[5] PERVEZ H, NURSYAR B, PERUMAL N, et al. A review on optimized control systems for building energy and comfort man-agement of smart sustainable buildings [J]. Renewable and Sustainable Energy Reviews, 2014, 34: 409-429.

[6] ABDUL A, FARRONKH J. Theory and applications of HVAC control systems e A review of model predictive control (MPC) [J]. Building and Enviro nment, 2014, 72: 343-355.

[7] DALAMAGIDIS K, KOLOKOTSA D, KALAITZAKIS K, et al. Reinforcement learning for energy conservation and comfort in buildings [J]. Building and Environment, 2007, 42(7): 2686-98.

[8] KARATASOU S, SANTAMOURIS M, GEROS V. Modeling and predicting buildings energy use with artificial neural net-works: methods and results [J]. Energy and Buildings, 2006, 38(8): 949-58.

[9] ZAVALA VM. Real-Time Optimization Strategies for Building Systems[J]. Industrial & Engineering Chemistry Re-search, 2013, 52(9):3137-3150.

[10] JUSTIN R, BRANDON M. Model predictive HVAC control with online occupancy model [J]. Energy and Buildings, 2014, 82:675–684.

[11] MOROSAN P, B OURDAIS R, D UMUR D, et al. Building temperature regulation using a distributed model predictive control[J]. Energy Build,2010,42:1445-1452.

[12] EKMAN M. Modeling and control of bilinear systems, applications to the activated sludge process [D]. Uppsala: Uppsala Uni-versity, 2005.

[13] LIU Chuan. Distribution theory of the least squares averaging estimator [J]. Journal of Econometrics, 2015, 186(1): 142-159.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(51508445);陕西省科技计划国际合作项目(2014KW17);教育部留学回国人员科研启动基金(教外司留[2014]1685号)
收稿日期:2016-04-08 修改稿日期:2017-01-03
作者简介:赵安军(1975-),男,副教授,博士,主要研究方向为智能建筑、能耗检测与评估.E-mail: zhao_anjun@163.com
更新日期/Last Update: 2017-03-16