[1]刘春燕,李慧民,李东波.基于分子动力学的多晶石墨烯拉伸力学性能的应变率相关性[J].西安建筑科技大学学报(自然科学版),2017,49(04):604-610.[doi:10.15986/j.1006-7930.2017.04.023]
 LIU Chunyan,LI Huimin,LI Dongbo.Effects of tensile strain rate on mechanical properties of polycrystalline graphene based on molecular dynamics[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(04):604-610.[doi:10.15986/j.1006-7930.2017.04.023]
点击复制

基于分子动力学的多晶石墨烯拉伸力学性能的应变率相关性()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年04期
页码:
604-610
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Effects of tensile strain rate on mechanical properties of polycrystalline graphene based on molecular dynamics
文章编号:
1006-7930(2017)04-0604-07
作者:
刘春燕1李慧民1李东波2
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2. 西安建筑科技大学 理学院,陕西 西安 710055 )
Author(s):
LIU Chunyan1 LI Huimin1 LI Dongbo2
(1. School of Civil Engineering, Xian Univ. of Arch . & Tech ., Xian, 710055, China; 2. School of Science, Xian Univ. of Arch . & Tech ., Xian, 710055, China)
关键词:
分子动力学多晶石墨烯力学性能拉伸应变率
Keywords:
molecular dynamics polycrystalline graphene mechanical properties tensile strain rate
分类号:
TB332
DOI:
10.15986/j.1006-7930.2017.04.023
文献标志码:
A
摘要:
应变率是材料力学性能和变形机制的重要影响因素.利用维诺图理论,创建了不同晶粒尺寸的多晶石墨烯模型;利用分子动力学(MD)法,研究了不同拉伸应变率下多晶石墨烯的弹性模量、拉伸强度、极限应变等与拉伸应变率之间的关系.结果表明,多晶石墨烯的拉伸强度随拉伸应变率的增大而呈线性增大的趋势.对同一应变率而言,拉伸强度随晶粒尺寸的增大而增大,但对拉伸应变率的敏感度呈减小趋势.随拉伸应变率的增大,弹性模量呈增大趋势,但其受影响程度取决于应变率与阈值的关系.随着拉伸应变率的增大,极限应变呈增大趋势.对同一应变率而言,随晶粒尺寸的减小,极限应变呈增大趋势.研究结果对明确拉伸应变率与多晶石墨烯拉伸力学性能之间的相关性具有一定的参考价值和意义
Abstract:
Strain rate is an important influence factor on the mechanical properties and deformation mechanism of materials . In the present paper, the polycrystalline graphene model of different grain size is built up using the theory of Voronoi diagram . Moreover, based on molecular dynamics (MD) numerical simulation, the effects of tensile strain rate on Young′s elastic modulus, ultimate stress and ultimate strain are analyzed . The results indicate that, with the increase of tensile strain rate, tensile strength shows an increase trend . For the same strain rate, tensile strength increases with the increase of grain size, but the strain rate sensitivity shows a decrease trend . Elastic modulus increases with the increase of strain rate . However, the influence extent of strain rate on elastic modulus depends on the relationship between the strain rate and the threshold value . With the increase of tensile strain rate, ultimate strain shows an increase trend . For the same strain rate, tensile strength increases with the decrease of grain size . The research results can offer reference about the correlation between tensile strain rate and the tensile mechanical properties of polycrystalline graphene

参考文献/References:

References

[1]BRINK Van Den J. Graphene: from strength to strength[J]. Nature Nanotechnology, 2007, 2(4): 199 -201.

[2]王璐,高峻峰,丁峰.经典晶体生长理论在石墨烯CVD成核和连续生长中的应用[J]. 化学学报, 2014, 72(3): 345-358.

WANG Lu, GAO Junfeng, DING Feng. Application of crystal growth theory in graphene CVD nucleation and growth [J]. Acta Chimica Sinica, 2014, 72(3): 345-358.

[3]HUANG P Y, RUIZ-VARGAS C S, ZANDE Van Der A M, Whitney WS, et al . Grains and grain boundaries in single -layer graphene atomic patchwork quilts [J]. Nature ,2011,469:389-92.

[4]RUIZ-VARGAS C S, ZHUANG H L, HUANG P Y, et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes [J]. Nano Lett, 2011,11(6):2259-63.

[5]SHA Z D, PEI Q X, LIU Z S, et al. Is the failure of large -area polycrystalline graphene notch sensitive or insensitive [J]. Carbon, 2014 ,72 : 200 -206.

[6]YI L, YIN Z, ZHANG Y, CHANG T. A theoretical evaluation of the temperature and strain -rate dependent fracture strength of tilt grain boundaries in graphene[J]. Carbon, 2013 ,51: 373-80.

[7]CHEN M Q, QUEK S S, SHA Z D, et al. Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene -A molecular dynamics study[J]. Carbon, 2015 ,85: 135-146.

[8]李东波,赵冬,华军.多晶石墨烯拉伸力学性能及其影响因素的灵敏度分析[J].固体力学学报,2016,37(3):234-246.

LI Dongbo, ZHAO Dong, HUA Jun. Tensile mechanical properties and influence factor sensitivity analysis of polycrystalline graphene. Chinese journal of solid mechanics, 2016 ,37(3): 234-246.

[9]MORTAZAVI B, CUNIBERTI G. Atomistic modeling of mechanical properties of polycrystalline graphene [J]. Nanotechnology, 2014 ,25(21): 215-222.

[10]SONG Z, ARTYUKHOV V I, YAKOBSON B I, XU Z. Pseudo hall -petch strength reduction in polycrystalline graphene [J]. Nano Lett, 2013, 13(4): 1829-33.

[11]LEE W S, LIN C F. Impact properties and microstructure evolution of 304L stainless steel [J]. Mat Sci Eng A, 2001, 308(1/2): 124 -135.

[12]MEYERS M A. Dynamics Behavior of Materials [M]. New York: John Wiley& Sons Inc, 1994 .

[13]BROSTOW W, DUSSAULT J P, FOX B L. Construction of voronoi polyhedra[J]. J Comput Phys ,1978, 29(1): 81-92.

[14]张俊杰.基于分子动力学的晶体铜纳米机械加工表层形成机理研究[D].哈尔滨:哈尔滨工业大学,2011.

ZHANG Junjie. Molecular dynamics study of generation mechanism of surface layer in nanomechanical machining of crystalline copper [D]. Harbin: Harbin Institute of Technology, 2011 .

[15]STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. J Chem Phys ,2000, 112(14): 6472-86.

[16]李东波,赵冬,华军.碳原子辐照损伤后石墨烯拉伸力学性能的温度相关性[J].西安建筑科技大学学报(自然科学版), 2016, 48(3): 454-458.

LI Dongbo, ZHAO Dong, HUA Jun.. Research on correlation of tensile mechanical properties of irradiated graphene by C atoms with temperature [J].J. Xi′an Univ . of Arch .& Tech .(Natural Science Edition), 2016,48(3): 454-458.

[17]韩同伟,贺鹏飞,王健,等.单层石墨烯薄膜拉伸变形的分子动力学研究[J].新型碳材料, 2010, 25(4): 261-266.

HAN Tongwei, HE Pengfei, WANG Jian, et al. Molecular dynamics simulation of a single graphene sheet under tension [J]. New carbon materials, 2010, 25(4): 261 -266.

[18]张宁,杨新华,陈传尧.纳米双晶铜单向拉伸弹性性能的应变率效应和尺寸效应[J].固体力学学报,2009,30(3):231-235.

ZHANG Ning, YANG Xinhua, CHEN Chuanyao. Effect of strain rate and size on the mechanical properties of nano-bi-crystal Cu under uni-axial tension[J]. Chinese journal of solid mechanics, 2009 ,30(3): 231-235.

[19]韩强,黄凌燕.石墨烯薄膜拉伸性能的分子动力学模拟[J].华南理工大学学报,2012,40(2):29-34.

HAN Qiang, HUANG Ling-yan. Molecular dynamics simulation of tensile properties of graphene sheets [J]. Journal of South China University of Technology, 2012, 40(2):29 -34.

[20]SHOHJI Ikuo, YOSHIDA Tomohiro, TAKAHASHI Takehiko, et al. Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity[J]. Materials Science and Engineering A, 2004 ,366(1):50-55.

相似文献/References:

[1]华军,陈垣欣,段志荣,等.含裂纹石墨烯辐照修复研究[J].西安建筑科技大学学报(自然科学版),2018,50(01):141.[doi:10.15986/j.1006-7930.2018.01.022]
 HUA Jun,CHEN Yuanxin,DUAN Zhirong,et al.Repairing of the graphene with a crack by carbon ion irradiation[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):141.[doi:10.15986/j.1006-7930.2018.01.022]

备注/Memo

备注/Memo:
收稿日期:2016-01-09修改稿日期:2017-07-15
基金项目:国家自然科学基金(51641809);陕西省工业科技攻关项目(2015GY141);西安建筑科技大学人才基金(RC1601)
第一作者:刘春燕(1982-),女,博士生,主要研究高性能水泥基材料.E-mail: 94791682@qq.com
更新日期/Last Update: 2017-09-11