参考文献/References:
References
[1]BRINK Van Den J. Graphene: from strength to strength[J]. Nature Nanotechnology, 2007, 2(4): 199 -201.
[2]王璐,高峻峰,丁峰.经典晶体生长理论在石墨烯CVD成核和连续生长中的应用[J]. 化学学报, 2014, 72(3): 345-358.
WANG Lu, GAO Junfeng, DING Feng. Application of crystal growth theory in graphene CVD nucleation and growth [J]. Acta Chimica Sinica, 2014, 72(3): 345-358.
[3]HUANG P Y, RUIZ-VARGAS C S, ZANDE Van Der A M, Whitney WS, et al . Grains and grain boundaries in single -layer graphene atomic patchwork quilts [J]. Nature ,2011,469:389-92.
[4]RUIZ-VARGAS C S, ZHUANG H L, HUANG P Y, et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes [J]. Nano Lett, 2011,11(6):2259-63.
[5]SHA Z D, PEI Q X, LIU Z S, et al. Is the failure of large -area polycrystalline graphene notch sensitive or insensitive [J]. Carbon, 2014 ,72 : 200 -206.
[6]YI L, YIN Z, ZHANG Y, CHANG T. A theoretical evaluation of the temperature and strain -rate dependent fracture strength of tilt grain boundaries in graphene[J]. Carbon, 2013 ,51: 373-80.
[7]CHEN M Q, QUEK S S, SHA Z D, et al. Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene -A molecular dynamics study[J]. Carbon, 2015 ,85: 135-146.
[8]李东波,赵冬,华军.多晶石墨烯拉伸力学性能及其影响因素的灵敏度分析[J].固体力学学报,2016,37(3):234-246.
LI Dongbo, ZHAO Dong, HUA Jun. Tensile mechanical properties and influence factor sensitivity analysis of polycrystalline graphene. Chinese journal of solid mechanics, 2016 ,37(3): 234-246.
[9]MORTAZAVI B, CUNIBERTI G. Atomistic modeling of mechanical properties of polycrystalline graphene [J]. Nanotechnology, 2014 ,25(21): 215-222.
[10]SONG Z, ARTYUKHOV V I, YAKOBSON B I, XU Z. Pseudo hall -petch strength reduction in polycrystalline graphene [J]. Nano Lett, 2013, 13(4): 1829-33.
[11]LEE W S, LIN C F. Impact properties and microstructure evolution of 304L stainless steel [J]. Mat Sci Eng A, 2001, 308(1/2): 124 -135.
[12]MEYERS M A. Dynamics Behavior of Materials [M]. New York: John Wiley& Sons Inc, 1994 .
[13]BROSTOW W, DUSSAULT J P, FOX B L. Construction of voronoi polyhedra[J]. J Comput Phys ,1978, 29(1): 81-92.
[14]张俊杰.基于分子动力学的晶体铜纳米机械加工表层形成机理研究[D].哈尔滨:哈尔滨工业大学,2011.
ZHANG Junjie. Molecular dynamics study of generation mechanism of surface layer in nanomechanical machining of crystalline copper [D]. Harbin: Harbin Institute of Technology, 2011 .
[15]STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. J Chem Phys ,2000, 112(14): 6472-86.
[16]李东波,赵冬,华军.碳原子辐照损伤后石墨烯拉伸力学性能的温度相关性[J].西安建筑科技大学学报(自然科学版), 2016, 48(3): 454-458.
LI Dongbo, ZHAO Dong, HUA Jun.. Research on correlation of tensile mechanical properties of irradiated graphene by C atoms with temperature [J].J. Xi′an Univ . of Arch .& Tech .(Natural Science Edition), 2016,48(3): 454-458.
[17]韩同伟,贺鹏飞,王健,等.单层石墨烯薄膜拉伸变形的分子动力学研究[J].新型碳材料, 2010, 25(4): 261-266.
HAN Tongwei, HE Pengfei, WANG Jian, et al. Molecular dynamics simulation of a single graphene sheet under tension [J]. New carbon materials, 2010, 25(4): 261 -266.
[18]张宁,杨新华,陈传尧.纳米双晶铜单向拉伸弹性性能的应变率效应和尺寸效应[J].固体力学学报,2009,30(3):231-235.
ZHANG Ning, YANG Xinhua, CHEN Chuanyao. Effect of strain rate and size on the mechanical properties of nano-bi-crystal Cu under uni-axial tension[J]. Chinese journal of solid mechanics, 2009 ,30(3): 231-235.
[19]韩强,黄凌燕.石墨烯薄膜拉伸性能的分子动力学模拟[J].华南理工大学学报,2012,40(2):29-34.
HAN Qiang, HUANG Ling-yan. Molecular dynamics simulation of tensile properties of graphene sheets [J]. Journal of South China University of Technology, 2012, 40(2):29 -34.
[20]SHOHJI Ikuo, YOSHIDA Tomohiro, TAKAHASHI Takehiko, et al. Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity[J]. Materials Science and Engineering A, 2004 ,366(1):50-55.