[1]崔海航,张永波,张静刚,等.微孔道内渗透现象的数值模拟[J].西安建筑科技大学学报(自然科学版),2018,50(02):277-0284.[doi:10.15986/j.1006-7930.2018.02.019]
 CUI Haihang,ZHANG Yongbo,ZHANG Jinggang,et al.Simulation of osmosis in micro channels[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(02):277-0284.[doi:10.15986/j.1006-7930.2018.02.019]
点击复制

微孔道内渗透现象的数值模拟()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
50
期数:
2018年02期
页码:
277-0284
栏目:
出版日期:
2018-05-28

文章信息/Info

Title:
Simulation of osmosis in micro channels
文章编号:
1006-7930(2018)02-077-08
作者:
崔海航张永波张静刚张鸿雁 陈 力
(西安建筑科技大学 环境与市政工程学院,陕西 西安,710055)
Author(s):
CUI Haihang ZHANG Yongbo ZHANG Jinggang ZHANG Hongyan
(School of Environmental and Municipal Engineering, Xi’an Univ. of Arch and Tech , Xi’an 710055, China)
关键词:
边界滑移KK模型CFD渗透
Keywords:
b oundary slipKedem-Katchalsky modelCFDOsmosis
分类号:
X382
DOI:
10.15986/j.1006-7930.2018.02.019
文献标志码:
A
摘要:
渗透现象是一种广泛应用于污水处理、海水淡化、渗透马达和微泵等领域的自然现象而KedemKatchalsky(KK)模型作为描述渗透现象的经典热力学模型,存在诸多不足之处,如对压强分布描述不够清晰、无法揭示壁面位移情况等为更加深入的理解渗透现象,建立了边界滑移条件下基于CFD模拟单孔道数学模型通过对KK模型中溶质反射系数和纯水渗透系数的模拟,验证了模型的可靠性在此基础上,模拟并研究了孔道内流场分布、压强分布及边界应力分布同时合理地解释了溶质反向渗透及溶胀现象
Abstract:
Osmosis phenomenon is a natural phenomenon widely encountered in the fields of sewage treatment, seawater desalination, osmotic motor and micropump. The Kedem-Katchalsky ( K-K) model, as the classical thermodynamic model for describing the osmotic phenomenon, has many shortcomings, such as the description of the pre ssure distribution is not clear and it can’t reveal the wall displacement and so on. In order to understand of the phenomenon of osmosis deeply, the mathematical model of a single channel, based on CFD software, was established under the condition of boundary slip. The reliability of the model was verified by the simulation of solute reflection coefficient and pure water permeability coefficient in the K-K model. On this basis, the flow field distribution, pressure distribution and boundary stress distribution were simulated and studied. At the same time, solute reverse osmosis and swelling were explained reasonably

参考文献/References:

参考文献References
[1]王晓琳反渗透和纳滤技术与应用[M] 北京:化学工业出版社,2005:12
WANG Xiaolin Application of reverse osmosis and nanofiltration[M] BeiJing: Chemical Industry Press, 2005:12
[2]Van′T Hoff J H Die Rolle des osmotischen druckes in der analogie zwischen lsungen und gasen[J] Z phys Chem 1887, 1(9): 481508
[3]SOURIRAJAN S Mechanism of demineralization of aqueous sodium chloride solutions by flow, under pressure, through porous membranes[J] Industrial & Engineering Chemistry Fundamentals, 1963, 2(1): 5155
[4]LONSDALE H K, MERTEN U, RILEY R L Transport properties of cellulose acetate osmotic membranes[J] Journal of Applied Polymer Science, 1965, 9(4): 13411362
[5]GUELL D C, BRENNER H Physical mechanism of membrane osmotic phenomena[J] Industrial & Engineering Chemistry Research, 1996, 35(9): 30043014
[6]马学虎, 范文霞, 潘广生, 等 冷冻保护剂导入细胞过程的模拟和优化[J] 热科学与技术, 2008, 7(4): 324330
MA Xuehu , FAN Wenxia, PAN Guang sheng et al Modeling and optimization of process of cryoprotective agent addition[J] Journal of Thermal Science and Technology, 2008, 7(4):324330
[7]STAVERMAN A J The theory of measurement of osmotic pressure[J] Recueil des Travaux Chimiques des PaysBas, 1951, 70(4): 344352
[8]KLEINHANS F W Membrane permeability modeling: Kedem–Katchalsky vs a twoparameter formalism[J] Cryobiology, 1998, 37(4): 271289
[9]KIIL F Mechanism of osmosis[J] Kidney Int, 1982, 21(2): 303308
[10]SOODAK H, IBERALL A Osmosis, diffusion, convection[J] American Journal of PhysiologyRegulatory, Integrative and Comparative Physiology, 1978, 235(1): 317
[11]何文博 植物内水分传输机理与模拟研究[D]西安:西安建筑科技大学 2009
HE Wenbo Water transport mechanism and simulation in plant [D] Xi′an:Xi′an Univ of Arch and Tech 2009
[12]刘翠红 集成渗透作用微泵的微流控芯片细胞灌注式培养的研究[D] 沈阳:东北大学, 2009:612
LIU Cuihong An onchip integrated pump based on osmosis effect for perfusion cell culture [D] Shenyang: Northeastern University, 2009:612
[13]CóRDOVAFigueroa U M, BRADY J F Osmotic propulsion: the osmotic motor [J] Physical Review Letters, 2008, 100(15): 158303
[14]崔海航, 谭晓君, 张鸿雁, 等 自驱动 Janus 微球近壁运动特性实验与数值模拟研究[J] 物理学报, 2015, 64(13): 134705
CUI Haihang , TAN Xiaojun , ZHANG Hongyan , et al Experiment and numerical study on the characteristics of selfpropellant Janus microspheres near the wall [J] Acta Physica Sinica, 2015, 64(13):134705
[15]BOCQUET L, BARRAT J L. Flow boundary conditions from nanoto microscales[J] Soft Matter, 2007,3(6): 685693
[16]GADELHAk M Flow physics in MEMS[J] Mécanique & Industries, 2001, 2(4): 313341
[17]WATANABE K, MIZUNUMA H Slip of newtonian fluids at slid boundary[J] JSME International Journal Series B Fluids and Thermal Engineering, 1998, 41(3): 525529
[18]HEINBUCH U, FISCHER J Liquid flow in pores: slip, noslip, or multilayer sticking[J] Physical Review A, 1989, 40(2): 11441146
[19]曹炳阳, 陈民, 过增元 纳米通道内液体流动的滑移现象[J] 物理学报, 2006, 55(10): 53055310
CAO Bingyang , CHEN Min , GUO Zengyuan Velocity slip of liquid flow in nanochannels [J] Acta Physica Sinica, 2006, 55(10):53055310
[20]吴承伟, 马国军, 周平 流体流动的边界滑移问题研究进展[J] 力学进展, 2008, 38(3): 265282
WU Chengwei , MA Guojun , ZHOU Ping A review of the study on the boundary slip problems of fluid flow[J] Advances In Mechanics, 2008, 38(3):265282.
[21]凌智勇, 刘勇, 庄志文, 等 界面性质对流动滑移特性影响的实验研究[J] 润滑与密封, 2007(12): 104105
LING Zhiyong , LIU Yong , ZHUANG Zhiwen ,et al Experimental study of the characteristic of fluid slip in hydrophilic and hydrophobic microchannels [J] Lubrication Engineering, 2007(12):104105.
[22]AJDARI A, BOCQUET L Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusioosmosis and beyond [J] Physical Review Letters, 2006, 96(18): 186102
[23]KARNIADAKIS G E, BESKOK A, ALURU N Microflows and nanoflows: fundamentals and simulation[M] New York: Springer Science & Business Media, 2006
[24]JACOB N I Intermolecular and surface forces[M] San Diego: Academic, 1992
[25]BOCQUET L, CHARLAIX E Nanofluidics, from bulk to interfaces[J] Chemical Society Reviews, 2010, 39(3): 10731095
[26]CARDOSO S S S, CARTWRIGHT J H E Dynamics of osmosis in a porous medium[J] Royal Society Open Science, 2014, 1(3): 140352
[27]王晓琳, 中尾真一 低分子量中性溶质体系的纳滤膜的透过特性[J] 南京化工大学学报, 1998, 20(4): 3640
WANG Xiaolin, NAKAO Shinichi Permeation performance of nanofiltration membranes for systems of aqueous solutions of neutral solutes with low molecular weight[J] Journal of Nanjing University of Chemical Technology, 1998, 20(4): 3640
[28]谢朋, 张忠国, 孙涛, 等 正渗透过程中汲取质反向渗透研究进展[J] 化工进展, 2015, 34(10): 35403550
XIE Peng, ZHANG Zhongguo, SUN Tao, et al Research progress of reverse draw solute permeation in forward osmosis process[J] Chemical Industry and Engineering Progress, 2015, 34(10): 35403550
[29]MEDVED I, CˇERNYˇ R Osmosis in porous media: A review of recent studies[J] Microporous and Mesoporous Materials, 2013, 170: 299317.
[30]郑旭,崔海航,李战华 Janus球形微马达的自驱动机理研究:自扩散泳动与微气泡推进[J] 科学通报, 2017, (Z1):167186
ZHENG Xu, CUI Haihang, LI Zhanhua The mechanisms of the selfpropelled spherical Janus micromotor: Selfdiffusiophoresis and microbubble propulsion[J] Bulletin of Science and Technology, 2017, (Z1):167186
[31]NIJS B, BLAADEREN A, ROELAND J M, et al Fuel concentration dependent movement of supramolecular catalytic nanomotors[J] Nanoscale, 2013, 5(4): 13151318
[32]LIU C, ZHOU C, WANG W, et al Bimetallic microswimmers speed up in confining channels[J] Physical Review Letters, 2016 117(19): 198001

备注/Memo

备注/Memo:
收稿日期:2017-03-09  修改稿日期:2018-03-29
基金项目:国家自然科学基金项目(11447133,11602187);陕西省教育厅重点实验室基金资助项目(15JS045)
第一作者:崔海航(1975-),男,副教授,主要从事水处理技术数值模拟研究,cuihaihang@xauat.edu.cn

更新日期/Last Update: 2018-05-28