[1]任松,李玉,欧阳汛,等.水平软硬互层隧道围岩动态模拟方法及施工方法优选[J].西安建筑科技大学学报(自然科学版),2018,50(03):317-0323.[doi:10.15986/j.1006-7930.2018.03.002]
 REN Song,LI YU,OUYANG Xun,et al.Stability analysis and optimization of construction technology on tunnel excavation with softhard interbed rock[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(03):317-0323.[doi:10.15986/j.1006-7930.2018.03.002]
点击复制

水平软硬互层隧道围岩动态模拟方法及施工方法优选()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
50
期数:
2018年03期
页码:
317-0323
栏目:
出版日期:
2018-06-30

文章信息/Info

Title:
Stability analysis and optimization of construction technology on tunnel excavation with softhard interbed rock
文章编号:
1006-7930(2018)03-0317-07
作者:
任松1李玉1欧阳汛12陈钒2姜德义1陈结1
(1.重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400030;2.中电建路桥集团有限公司,北京 100048)
Author(s):
REN Song1 LI YU1 OUYANG Xun12 CHEN Fan2 JIANG Deyi1 CHEN Jie1
(1.State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 40030, China; 2. Power China Road Bridge Group Co, LTD, Beijing 100048, China)
关键词:
软硬互层接触分析动态模拟施工工艺优选现场验证
Keywords:
soft-hard interbed rock contact analysis dynamic simulation construction optimization field verification
分类号:
TU97
DOI:
10.15986/j.1006-7930.2018.03.002
文献标志码:
A
摘要:
水平软硬互层岩体具有明显的层理效应,在数值计算时常将其近似为一种横观各向同性体.层理存在对隧道围岩特别是上部围岩稳定性具有重要影响,使得隧道开挖时拱顶下沉较水平收敛大,易发生冒顶.为此提出水平互层围岩隧道动态模拟方法,考虑层理效应下围岩持续变形,并应用于江习高速四面山砂泥互层V级围岩隧道施工,得到如下结论:1)不同方法模拟所得围岩变形结果均符合软硬互层隧道围岩变形特点,且动态模拟方法能够考虑围岩时变效应,更接近现场测试结果;2)对比不同隧道施工方法,提出了近水平软硬互层隧道的优选方案建议;3)将优选方案进行现场验证,结果显示隧道实际变形与模拟结果基本吻合.研究成果可在类似隧道施工模拟及工艺优化中推广应用.
Abstract:
Horizontal interbed of soft and hard surrounding rock has an obvious bedding effect, it was often considered as a transversely isotropic rock mass in numerical calculation. Bedding is important influence to the upper tunnel surrounding rock, especially the stability of surrounding rock. At the same time, Bedding has an important effect on the surrounding rock, especially the stability of the upper tunnel, which lead to a larger vault sink value than level convergence and roof fall easily when the tunnel excavation. Therefore, dynamic simulation method for the horizontal interbed surrounding rock tunnel was put forward, to consider the rock continuous deformation under the effect of bedding, then applied to the construction of Simianshan mountain tunnel surrounded with soft-hard interbed rock at the level of grade V in Jiangxi highway. ?Get the following conclusion:1) The displacement results by using different simulation methods were conformed to the characteristics of surrounding rock deformation of soft and hard interbedded rock. And the dynamic simulation method can consider the time-varying effect of surrounding rock, which was closer to the field test results; 2) Compare different tunnel construction methods, the optimal scheme of near horizontal soft-hard interlayer tunnel was proposed; 3) Took the optimal scheme into practice, the simulated values approximately agree with the measured results. Research results can be promoted and it can be a good model for the similar tunnel construction simulation and optimization.

参考文献/References:

[1]鲁志伟. ?层状岩体地下洞室失稳机理及稳定性评价理论研究[D]. 贵阳:贵州大学, 2007.

LU Zhiwei. Research on destabilization mechanics and stability appraisal theory of bedded rock chamber[D]. Guiyang:Guizhou University, 2007.
[2]晏莉, 阳军生, 张学民,等. 水平互层岩体并行隧道中间岩柱稳定分析[J]. 岩石力学与工程学报, 2009, 28(S1):2898-2904.
YAN Li, YANG Junsheng, ZHANG Xueming, et al. Stability analysis of middle rock pillar in parallel tunnels in horizontally interbedding rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1):2898-2904.
[3]ZHAO C, LAVASAN A A, BARCIAGA T, et al. Model validation and calibration via back analysis for mechanized tunnel simulations : The Western Scheldt tunnel case[J]. Computers & Geotechnics, 2015, 69(7):601-614.
[4]张茹,王正中,牟声远,等. 基于横观各向同性冻土的U形渠道冻胀数值模拟[J]. 应用基础与工程科学学报, 2010, 18(5): 773-783.
ZHANG Ru, WANG Zhengzhong, MOU Shengyuan, et al. Numerical simulation of frost heaving for ucanal based on transverse isotropy[J]. Journal of Basic Science and Engineering, 2010, 18(5): 773-783.
[5]宓荣三. 乔庄隧道穿越软弱围岩施工力学行为分析[J]. 现代隧道技术, 2011,48(4): 87-91,104.
MI Rongsan. Analysis of the construction behavior of the Qiaozhuang tunnel in soft rock[J]. Modern Tunnelling Technology, 2011,48(4): 87-91,104.
[6]肖小文, 王立川, 阳军生,等. 高地应力区缓倾互层岩体无砟轨道隧道底部隆起的成因分析及整治方案[J]. 中国铁道科学, 2016, 37(1):78-84.
XIAO Xiaowen, WANG Lichuan, YANG Junsheng, et al. Cause analysis and treatment scheme for bottom heave of ballastless track tunnel in nearly horizontally interbedded rock mass with high geostress[J]. China Railway Science, 2016, 37(1):78-84.
[7]梁正召,唐春安,李厚祥,等. 单轴压缩下横观各向同性岩石破裂过程的数值模拟[J]. 岩土力学, 2005, 26(1): 57-62.
LIANG Zhengzhao, TANG Chunan, LI Houxiang, et al A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression[J]. Rock and Soil Mechanics, 2005, 26(1): 57-62.
[8]TANG C A, LIU H, LEE P K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(4): 555-569.
[9]黄达. 软硬岩层互层巷道顶板稳定性分析[D]. 太原:太原理工大学, 2004.
HUANG Da. The stability analyses of the laneway roof in soft and hard interbedded rocks[D]. Taiyuan:Taiyuan University of Technology, 2004.
[10]杜文. 双线铁路隧道平缓砂泥岩互层围岩变形机理分析[J]. 现代隧道技术, 2012, 49(4):22-25.
DU Wen. Analysis of the surrounding rock deformation mechanism of a gently inclined sand and mud stone interbed in a doubletrack railway tunnel[J]. Modern tunnelling technology, 2012, 49(4):22-25.
[11]任松, 欧阳汛, 姜德义, 等. ?软硬互层隧道稳定性分析及初期支护优化[J]. 华中科技大学学报(自然科学版), 2017, 45(7): 17-22.
REN Song, OUYANG Xun, JIANG Deyi, et al. Stability analysis and optimization of primary support on tunnel excavation with softhard interbed rock[J]. J.Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2017, 45(7):17-22.
[12]熊亮. 层状围岩隧道稳定性及锚杆支护参数优化[D].重庆:重庆大学, 2010.
XIONG Liang. Layered rock stability and bolt support parameter optimization of tunnel[D]. Chongqing: Chongqing University, 2010.
[13]重庆交通科研设计院.公路隧道设计规范:JTG D70-2004[S]. 北京:人民交通出版社,2004.
Chongqing Commurication Technology Research & Design Institute Co.,LTD. Code for design of road tunnel: JTG D70-2004[S]. Beijing: China Communications Press, 2004.
[14]刘小军,张永兴地形因素及围岩类别对偏压隧道的影响效应分析[J].西安建筑科技大学学报(自然科学版),2010,42(2):205-210.
LIU Xiaojun, ZHANG Yongxing. Analysis of unsymmetrically loaded tunnel according to topographic factors and classification of the surrounding rocks[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2010,42(2):205-210.

备注/Memo

备注/Memo:
收稿日期:2017-05-03修改稿日期:2018-05-27
基金项目:国家自然科学基金资助项目(51774057);重庆市研究生科研创新项目资助(CYB15011)
第一作者:任松(1975-),男,教授,博导,主要从事隧道工程稳定性研究.E-mail: Rwx_cqu@cqu.edu.cn
通信作者:欧阳汛(1994-),男,研究生,主要从事地下工程安全稳定性方面的研究.Email: oyx-cqu@cqu.edu.cn
更新日期/Last Update: 2018-09-10