[1]董振平,王静,胡晓鹏,等.施工期混凝土力学性能的试验研究[J].西安建筑科技大学学报(自然科学版),2018,50(06):788-793.[doi:10.15986/j.1006-7930.2018.06.004]
 DONG Zhenping,WANG Jing,HU Xiaopeng,et al.Experimental study on mechanical properties of concrete during construction period[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(06):788-793.[doi:10.15986/j.1006-7930.2018.06.004]
点击复制

施工期混凝土力学性能的试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
50
期数:
2018年06期
页码:
788-793
栏目:
出版日期:
2018-12-31

文章信息/Info

Title:
Experimental study on mechanical properties of concrete during construction period
文章编号:
1006-7930(2018)06-0788-06
作者:
董振平王静胡晓鹏杨兰
西安建筑科技大学 土木工程学院,陕西 西安710055
Author(s):
DONG Zhenping WANG Jing HU Xiaopeng YANG Lan
School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China
关键词:
混凝土施工期立方体抗压强度劈拉强度轴心抗压强度弹性模量应力-应变本构关系
Keywords:
concrete construction period cubic compressive strength splitting tensile strength axial compressive strength elastic modulus stress-strain constitutive relation
分类号:
TQ174.75
DOI:
10.15986/j.1006-7930.2018.06.004
文献标志码:
A
摘要:
通过测试施工期混凝土材料的力学性能参数(立方体抗压强度、劈拉强度、轴心抗压强度、弹性模量、应力-应变本构关系曲线),研究了混凝土力学性能随龄期的变化规律,参照相关文献考虑龄期的影响建立了施工期混凝土各力学性能参数的计算模型.研究表明:随着龄期的不断增长,混凝土立方体抗压强度、劈拉强度、轴心抗压强度、弹性模量、应力-应变曲线的峰值应力逐渐增大,而应力-应变曲线的峰值应变逐渐减小;前7 d混凝土各力学性能指标变化速度较快,7 d后变化速度逐渐变缓.
Abstract:
By testing concrete materials in the construction period, the mechanical properties such as cube compressive strength, splitting tensile strength, axial compressive strength, elastic modulus, stress-strain constitutive relation curve were obtained, the change laws of mechanical properties with age were studied. Reference to relevant research results, some calculation models of various mechanical properties with concrete age were established. The results show that with increase of concrete age, some mechanical properties including the cube compressive strength, the splitting tensile strength, the axial compressive strength, the elastic modulus, the peak stress of stress-strain constitutive relation curve increases gradually, but the peak strain of stress-strain constitutive relation curve decreases gradually. The change speed of the mechanical properties is fast in the first 7 days after concrete pouring, but the change speed gradually decreased after 7 days.

参考文献/References:

[1]赵国藩. 工程结构生命全过程可靠度[M]. 北京: 中国铁道出版社, 2004.

ZHAO Guofan. Life-cycle reliability degree in engineering structures [M]. Beijing : China Railway Publishing House, 2004.
[2]王甲春, 阎培渝. 基于等效龄期的粉煤灰混凝土抗压强度计算模型[J].中山大学学报. 2014, 53(4): 83-87.
WANG Jiachun, YAN Peiyu. Computational model of fly ash concrete compressive strength based on the equivalent age[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni. 2014, 53(4): 83-87.
[3]ONER A, AKYUZ S, YILDIZ R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete[J]. Cement & Concrete Research, 2005, 35(6):1165-1171.
[4]YOSHITAKE I, ZHANG W, MIMURA Y, et al. Uniaxial tensile strength and tensile Young’s modulus of fly-ash concrete at early age[J]. Construction & Building Materials, 2013, 40(40):514-521.
[5]LEW H S, REICHARD T W. Mechanical properties of concrete at early ages [J]. Journal of the American Concrete Institute, 1978, 75(10):533-542.
[6]HAMMONS M I, SMITH D M. Early-time strength and elastic modulus of concrete with high proportions of fly ash[C]// Serviceability and Durability of Construction Materials. ASCE, 2015.
[7]胡晓鹏, 牛荻涛, 张永利. 粉煤灰混凝土早期强度的现场调查与试验研究[J]. 河海大学学报(自然科学版), 2012, 40(6): 676-680.
HU Xiaopeng, NIU Ditao, ZHANG Yongli. Field investigation and experimental research on early-stage strength of fly ash concrete [J]. Journal of Hohai University (Natural Sciences), 2012, 40(6): 676-680.
[8]马智英. 钢纤维混凝土早期力学性能发展规律的试验研究[D]. 北京: 北京工业大学, 2003.
MA Zhiying. An experimental study on the properties of steel fiber reinforced concrete at early ages [D]. Beijing: Beijing University of Technology, 2003.
[9]罗才毅. 不同掺合料混凝土早龄期力学性能试验研究[D]. 杭州: 浙江大学, 2002.
LUO Caiyi. Test research on mechanical properties of young concrete of different mineral admixtures [D]. Hangzhou: Zhejiang University, 2002.
[10]程多松, 尚建丽, 孙立春,等. 轻集料混凝土早期强度预测的试验研究[J]. 混凝土, 2007(1): 32-33.
CHENG Duosong, SHANG Jianli, SUN Lichun, et al. Experimental study on forecasting early strength of light aggregate concrete [J]. Concrete, 2007(1):32-33.
[11]中华人民共和国住房与城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081-2002 [S]. 北京: 中国建筑工业出版社, 2003.
Ministry of Housing and Urban-rural Development of the People’s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081-2002 [S]. Beijing: China Architecture & Building press, 2003.
[12]ACI Committee 209. Prediction of creep, shrinkage, and temperature effects in concrete structures (209R-92). America Concrete Institute, 1992.
[13]BETONBAU. Fib model code for concrete structures [J]. Ernst & Sohn, 2013.
[14]王梦梦.C40早龄期混凝土力学性能试验研究[D]. 北京: 北京交通大学, 2014.
WANG Mengmeng. Experimental study on mechanical behavior of C40 concrete at early age [D]. Beijing: Beijing Jiaotong University, 2014.
[15]张健仁, 王海臣, 杨伟军. 混凝土早期抗压强度和弹性模量的试验研究[J].中外公路, 2003, 23(3): 89-92.
ZHANG Jianren, WANG Haicheng, YANG Weijun. Experimental study on compressive strength and elastic modulus of early age concrete[J]. Journal of China & Foreign Highway, 2003, 23(3): 89-92.
[16]朱伯芳. 混凝土的弹性模量、徐变度与应力松弛系数[J]. 水利学报, 1985(9):56-63.
ZHU Bofang. Elastic modulus, creep and stress relaxation coefficient of concrete[J]. Journal of Hydraulic Engineering, 1985(9):56-63.
[17]林星平. 混凝土弹性模量及徐变度的计算[J]. 云南水利发电, 1999 (4): 15-18.
LIN Xingping. Calculation of elastic modulus and creep of concrete [J]. Yunnan Water Power. 1999 (4): 15-18.
[18]HOGHESTAD E. Concrete stress distribution in ultimate strength design [J].ACI, 1955(12): 455-479.
[19]KENT D C, PARK R. Flexural members with confined concrete [J].ASCE, 1971 (97): 1969-1990.
[20]PARK R, PAULAY T. Reinforced concrete structure [M]. New York: John Wiley & Sons, 1975.
[21]中华人民共和国住房与城乡建设部. 混凝土结构设计规范: GB50010-2015[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-rural Development of the People′s Republic of China. Code for design of concrete structures: GB/T 50010-2015 [S]. Beijing: China Architecture & Building press, 2015.

相似文献/References:

[1]丁红岩,梁玉国,高天宝,等.基于可靠度理论的无机胶植筋设计方法[J].西安建筑科技大学学报(自然科学版),2015,47(01):6.[doi:10.15986/j.1006-7930.2015.01.002]
 DING Hongyan,LIANG Yuguo,GAO Tianbao.The design method of inorganic glue bonded rebars based on reliability theory[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(06):6.[doi:10.15986/j.1006-7930.2015.01.002]
[2]于本田,王起才,周立霞,等.兰新铁路第二双线混凝土矿物掺合料掺量优化试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(03):351.[doi:10.15986/j.1006-7930.2012.03.008]
 YU Ben-tian,WANG Qi-cai,ZHOU Li-xia,et al.Optimization research on the contents of mineral admixture of concrete in the 2nd double line of Lanzhou-Xinjiang Railway[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(06):351.[doi:10.15986/j.1006-7930.2012.03.008]
[3]马中军,谈志诚,张 铟.混凝土桥梁应变的区间型预警阈值设定[J].西安建筑科技大学学报(自然科学版),2013,45(04):526.[doi:10.15986/j.1006-7930.2013.04.011]
 MA Zhong-jun,TAN Zhi-cheng,ZHANG Yin.Interval strain threshold setting method for early warning of concrete bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(06):526.[doi:10.15986/j.1006-7930.2013.04.011]
[4]侯 炜,贺拴海,张 岗.防火涂层对高温后混凝土抗压强度的影响[J].西安建筑科技大学学报(自然科学版),2014,46(02):241.[doi:10.15986/j.1006-7930.2004.02.015]
 HOU Wei,HE Shuanhai,ZHANG Gang.Effects of fire protection layer on compressive strength of concreteafter high temperature[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(06):241.[doi:10.15986/j.1006-7930.2004.02.015]
[5]韦 俊,孟 浩,薛圣广.钢筋不均匀锈蚀引起的混凝土保护层开裂有限元分析[J].西安建筑科技大学学报(自然科学版),2011,43(05):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
 WE I J un,MENG Hao,XUE Sheng-guang.FEM analysis on the crack process of concrete coverinduced by non-uniform corrosion of re-bar[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(06):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
[6]牛荻涛,陆炫毅,苗元耀,等.盐雾环境下疲劳损伤混凝土氯离子扩散性能[J].西安建筑科技大学学报(自然科学版),2015,47(05):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
 NIU Ditao,LU Xuanyi,MIAO Yuanyao,et al.Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(06):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
[7]张丽丽,王 海,徐 龙,等.水电站地下洞室施工期湿环境机械通风除湿数值模拟研究[J].西安建筑科技大学学报(自然科学版),2016,48(02):282.[doi:10.15986/j.1006-7930.2016.02.024]
 ZHANG Lili,WANG Hai,XU Long,et al.Study on mechanical ventilation dehumidification for construction period moisture environment of hydropower station underground caverns[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(06):282.[doi:10.15986/j.1006-7930.2016.02.024]
[8]朱方之1,马志鸣2,蒋连接1,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
 ZHU Fangzhi,MA Zhiming,JIANG Lianjie,et al.Study of influence of sustained load and freeze-thaw cycling on the bond behavior of steel reinforced concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(06):643.[doi:10.15986/j.1006-7930.2016.05.005]
[9]胡晓鹏,孙广帅,张成中,等.混凝土早期碳化性能的试验研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):492.[doi:10.15986/j.1006-7930.2017.04.005]
 HU Xiaopeng,SUN Guangshuai,ZHANG Chengzhong,et al.Experimental study on early carbonation of concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(06):492.[doi:10.15986/j.1006-7930.2017.04.005]
[10]张成中,彭刚,胡晓鹏,等.施工期剪力墙结构可变荷载的调查统计分析[J].西安建筑科技大学学报(自然科学版),2018,50(01):37.[doi:10.15986/j.1006-7930.2018.01.007]
 ZHANG Chengzhong,PENG Gang,HU Xiaopeng,et al.Investigation and statistical analysis of variable loads of shear wall structures during construction[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(06):37.[doi:10.15986/j.1006-7930.2018.01.007]

备注/Memo

备注/Memo:
收稿日期:2017-09-21修改稿日期:2018-11-01
基金项目:国家自然科学基金资助项目(51308441,51678473);陕西省自然科学基础研究计划(2016JM5073);陕西省教育厅专项科研计划项目(2013JK0951)
第一作者:董振平(1970-),男,博士,高级工程师,主要研究既有结构的评定与加固.E-mail:dongzp_02@163.co
通信作者:胡晓鹏(1980-),男,博士,副教授,主要研究混凝土结构耐久性.E-mail:shs339@sina.com
更新日期/Last Update: 2019-02-14