[1]刘凤云,邵珠山,张硕成,等.击实功对粗颗粒填料冻胀特性影响的试验研究[J].西安建筑科技大学学报(自然科学版),2018,50(06):834-840.[doi:10.15986/j.1006-7930.2018.06.011]
 LIU Fengyun,SHAO Zhushan,ZHANG Shuocheng,et al.Experiment study on compaction energy influence of frost heaving properties on coarse grained soil[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(06):834-840.[doi:10.15986/j.1006-7930.2018.06.011]
点击复制

击实功对粗颗粒填料冻胀特性影响的试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
50
期数:
2018年06期
页码:
834-840
栏目:
出版日期:
2018-12-31

文章信息/Info

Title:
Experiment study on compaction energy influence of frost heaving properties on coarse grained soil
文章编号:
1006-7930(2018)06-0834-07
作者:
刘凤云邵珠山张硕成刘华
西安建筑科技大学 土木工程学院,陕西 西安710055
Author(s):
LIU Fengyun SHAO Zhushan ZHANG Shuocheng LIU Hua
School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China
关键词:
寒区粗粒土冻胀击实功
Keywords:
cold regions coarse-grained soil frost-heave compaction energy
分类号:
TU311.3
DOI:
10.15986/j.1006-7930.2018.06.011
文献标志码:
A
摘要:
随着我国高速铁路的规划、建设逐步向寒区扩展,路基工程中势必要面对各类的工程冻害问题.基于控制轨面变形出发,在以往的工程实践中,主要集中在路基粗颗粒填料中细粒组分(<0.075 mm)的含量以及含水率对土体冻胀率的影响.考虑到受击实功影响的压实度是控制路基施工质量的重要因素之一,因此试验中引入击实功这一因素,探讨了击实功与冻胀率之间的关系,并通过对不同击实功下不同含水率和细粒含量的粗颗粒填料在不补水条件下的冻胀试验,分析得到路基粗颗粒土的击实功对冻胀率的影响.结果表明:标准击实条件下的冻胀率最大,欠击实和超击实条件下的冻胀率居中,不击实条件下的冻胀率最小;随着含水率的增大,粗颗粒土体的冻胀率也随之增大;但随着细粒含量的增大,粗颗粒土体的冻胀率反而降低,并据此提出了粗颗粒土体中细颗粒组分单位面积吸附水质量分布的一种解释.
Abstract:
Frost damage in subgrade engineering is a common problem during planning and construction of high-speed railway which gradually extends into cold regions. In the past years, many studies have investigated the influence of fine content (D<0.075 mm) and moisture content on frost-heave ratio in coarse-grained filling materials,which based on restrictions of rail surface deformation. It is established that compaction degree is an important standard of subgrade construction and is completely determined by compaction energy. Few authors had considered this factor in the subgrade construction in cold region. Thus, the effect of compaction energy was considered in this study. Frost-heave tests with different fine content and moisture content with non-water supply under different compaction energy conditions were carried out to determine the relationships between compaction energy and frost-heave ratio. Results showed that frost-heave ratio was the maximum in the standard compaction energy test, minimum in the non-compaction energy test, and median in the insufficient compaction energy and over compaction energy tests. High moisture content meant large frost-heave ratio. Surprisingly, frost-heave ratio decreased with the increase of fine content. An explanation of coefficient adsorption of water quality per unit area was also setup.

参考文献/References:

[1]吴青柏, 童长江.冻土变化与青藏公路的稳定性问题[J].冰川冻土,1995, 17(4):350-355.

WU Qingbai, TONG Changjiang. Permafrost change and stability of Qing-Tibet highway [J].Journal of Glaciology and Geocryology,1995,12(4):350-355.
[2]刘永智,吴青柏,张建明,等.青藏高原多年冻土地区公路路基变形[J].冰川冻土. 2002,24(1):10-15.
LIU Yongzhi, WU Qingbai, ZHANG Jianmin, et al. Deformation of highway roadbed in permafrost regions of the Tibetan plateau[J]. Journal of Glaciology and Geocryology, 2002,24(1):10-15.
[3]国家铁路局.高速铁路设计规范: TB10621-2014 [S]. 北京: 中国铁道出版社, 2014.
Mational Railways of People’s Republic of China. The standard of the design of high speed railway: TB10621-2014[S].Beijing:China Railway Publishing House,2014.
[4]中华人民共和国建设部. 冻土地区建筑地基基础设计规范: JTJ118-98 [S]. 北京: 中国建筑工业出版社, 1998.
Ministry of Constraction of the People’s Republic of China. Code for design of soil and foundation of building in frozen soil region:JTJ118-98[S]. Beijing:China Architecture and Building Press,1998.
[5]中华人民共和国国家经济贸易委员会. 水工建筑物抗冻设计规范:DL/T5082—1998 [S]. 北京:中国水利水电出版社,1998.
Ministry of Freign Economic Relations and Trade of Reople’s Republic of China. Design specifications of hydraulic structures against ice and freezing action:DL/T5082-1998[S]. Beijing:China Water Power Press,1998.
[6]李安原,牛永红,牛富俊,等. 粗颗粒土冻胀特性和防治措施研究现状[J]. 冰川冻土,2015,37(1):202-210.
LI Anyuan,NIU Yonghong,NIU Fujun,et al. Research status of heaving properties and controlling measures of coarse grained soil[J].Journal of Glaciology and Geocryology. 2015,37(1):202-210.
[7]刘泉声,黄诗冰,康永水,等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报,2015,34(3):452-471.
LIU Quansheng,HUANG Shibing,KANG Yongshui,et al. Advance and review on freezing-thawing damage of fractured rock[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(3):452-471.
[8]王天亮,岳祖润.细粒含量对粗粒土冻胀特性影响的试验研究[J].岩土力学,2013,34(2):359-364.
WANG Tianliang,YUE Zurun. Influence of fines content on frost heaving properties of coarse grained soil[J].Road and Soil Mechanics,2013,34(2):359-364.
[9]KONRAD J M. Freezing-induced water migration in compacted base-coursematerials[J]. Canadian Geotechnical Journal,2008,45(7):895-909.
[10]KONRAD J M,LEMIEUX N. Influence of fines on frost heave characteristics of a well-graded base-course material[J]. Canadian Geotechnical Journal,2005,42(2):515-527.
[11]BILODEAU J P,DORE G,PIERRE P. Gradation influence on frost susceptibility of base granular materials[J]. International Journal of Pavement Engineering,2008,9(6):397-411.
[12]王青志, 朱鑫鑫, 刘建坤, 等.寒区高速铁路路基粗颗粒填料大型直剪试验研究[J].铁道学报, 2016.38(8):102-109.
WANG Qingzhi, ZHU Xinxin,LIU Jiankun,et.al.Experimental Study on direct shear tests of coarse-grained fillings of high-speed railway subgrade in cold region[J]. Journal of the China Railway Society,2016.38(8). 102-109.
[13]聂志红, 谢扬, 焦倓. 基于双响应曲面法的压实质量连续检测参数稳健性设计[J]. 铁道学报,2016,38(6).
NIE Zhihong, XIE Yang, JIAO Tan.Robust design of continuous compaction measured value based on dual respone surface methodology[J].Journal of the china railway society,2016,38(6).
[14]聂志红,焦倓,王翔,等. 连续压实检测指标概率分布模型研究[J]. 郑州大学学报(工学版),2014,35(2):15-18.
NIE Zhihong,JIAO Tan,WANG Xiang. Study on probability distribution models of continuous compaction indicators[J]. Journal of Zhengzhou University(Engineering Science) ,2014,35(2):15-18.
[15]程展林,丁红顺,吴良平. 粗粒土试验研究[J]. 岩土工程学报,2007,29(8):1151-1158.
CHEN Zhanlin, DING Hongshun,WU Liangping.Experimental study on mechanical behavior of granular material [J].Chinese Journal of Geotechnical Engineering,2007,29(8):1151-1158.
[16]史彦文.大粒径砂卵石最大密度的研究[J]. 土木工程学报,1981(2):55-60.
SHI Yangwen. A study on maximum density of large sized sandy gravels[J].China Civil Engineering Jouranl.1981(2):55-60.
[17]郭庆国,刘贞草. 超径粗粒土最大干密度的近似测定方法[J]. 水利学报,1993(10):70-78.
GUO Qingguo,LIU Zhencao. The approximate determination method of maximum dry density of overdiameter coarse-grained earth[J].Shui Li Xue Bao,1993(10):70-78.
[18]蔡铭,岳祖润,叶朝良. 粗颗粒土混合料最大干密度及压实度研究[J]. 石家庄铁道大学学报(自然科学版),2013,26(3):103-106.
CAI Ming,YUE Zurun,YE Chaoliang. Research on Maximum Dry Density and Compaction of Coarse Soil Mixture[J].Journal of Shijiazhuang Tiedao University(Natural Science). 2013,26(3):103-106.
[19]左永振,张伟,潘家军,等. 粗粒料级配缩尺方法对其最大干密度的影响研究[J]. 岩土力学,2015(S1):417-422.
ZUO Yongzhen,ZHANG Wei,PAN Jiajun,et al. Effects of gradation scale method on maximum dry density of coarse-grained soil[J].Rock and Soil Mechanics. 2015(S1):417-422.
[20]中华人民共和国铁道部.铁路工程土工试验规程:TB10102-2004[S].北京:中国铁道出版社.2005.
Ministry of Railways of the People’s Republic of China. Code for Soil Test of Railway Engineering:TB10102-2004[S].Beijing: China Railway Publishing House.2005.
[21]中华人民共和国建设部,国家质量技术监督局.土工试验方法标准:GB/T50123-1999[S].北京:中国计划出版社.1999.
Ministry of Construction of the People’s Rupublic of China, The Quality and Technology SupervisionBureau. Standard for soil test method:GB/T50123-1999[S].Beijing: China Planning Press.1999.
[22]石刚强,赵世运,李先明,等. 严寒地区高速铁路路基冻胀变形监测分析[J]. 冰川冻土,2014,36(2):360-368.
SHI Gangqiang,ZHAO Shiyun,LI Xianming,et al. The frost heaving deformation of high-speed railway subgrades in cold regions:Monitoring and analyzing [J]. Journal of Glaciology and Geocryology. 2014,36(2):360-368.
[23]吴镇. 深季节冻土区高速铁路路基填料冻胀特性试验研究[D]. 石家庄:石家庄铁道大学,2013.
WU Zhen. Experimental study on frost heaveproperties of high-speed railway subgrade fillings in deep seasonal frozen regions[D].Shijiazhuang:Shijiazhuang Tiedao University.2013.

相似文献/References:

[1]刘容地,郑建国,李致远.砂砾石与混凝土接触面力学性能的试验研究[J].西安建筑科技大学学报(自然科学版),2013,45(06):834.[doi:10.15986/j.1006-7930.2013.06.014]
 LIU Rong-di,ZHENG Jian-guo,LI Zhi-yuan.Experimental research on mechanical properties of interface between concrete and gravel[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(06):834.[doi:10.15986/j.1006-7930.2013.06.014]
[2]陈鸽,朱俊高,袁荣宏,等.风干与饱和堆石料强度与变形特性试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(06):853.[doi:10.15986/j.1006-7930.2019.06.012]
 CHEN Ge,ZHU Jungao,et al.Experimental study on strength and deformation characteristics of dry and saturated coarse-grained soils[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(06):853.[doi:10.15986/j.1006-7930.2019.06.012]
[3]高 智,魏玉峰,金磊磊.基于M-C方法的粗粒土剪切排列分布演化机理研究[J].西安建筑科技大学学报(自然科学版),2020,52(06):873.[doi:10.15986/j.1006-7930.2020.06.014 ]
 GAO Zhi,WEI Yufeng,JIN Leilei.Research on the evolution of coarse-grained soil on permutation distribution based on M-C model[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):873.[doi:10.15986/j.1006-7930.2020.06.014 ]

备注/Memo

备注/Memo:
收稿日期:2018-05-15修改稿日期:2018-11-04
基金项目:国家自然科学基金(51608436);陕西省自然科学基础研究计划(2018JQ5003);陕西省教育厅专项科研项目(18JK0478)
第一作者:刘凤云(1988-),女,博士生,主要从事寒区岩土工程研究.E-mail: liufengyun0634@163.com
通信作者:刘华(1983-),男,副教授,主要从事寒区岩土工程研究.E-mail: liuhua029@xauat.edu.cn
更新日期/Last Update: 2019-02-14