[1]刘义,陈星,王新宇.特朗伯墙式空腔建筑体系的传热模型和数值模拟[J].西安建筑科技大学学报(自然科学版),2018,50(06):890-894.[doi:10.15986/j.1006-7930.2018.06.019]
 LIU Yi,CHEN Xing,WANG Xinyu.Heat transfer model and mathematics simulation of Trombe Wall to cavity construction system[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(06):890-894.[doi:10.15986/j.1006-7930.2018.06.019]
点击复制

特朗伯墙式空腔建筑体系的传热模型和数值模拟()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
50
期数:
2018年06期
页码:
890-894
栏目:
出版日期:
2018-12-31

文章信息/Info

Title:
Heat transfer model and mathematics simulation of Trombe Wall to cavity construction system
文章编号:
1006-7930(2018)06-0890-05
作者:
刘义1陈星2王新宇1
1.扬州大学 水利与能源动力工程学院,江苏 扬州 225127;2.扬州大学 建筑科学与工程学院,江苏 扬州 225127
Author(s):
LIU Yi1CHEN Xing2WANG Xinyu1
1.School of Hydraulic,Energy and Power Engineering,Yangzhou University,Jiangsu Yangzhou 225127,China; 2.Collegel of Civil Science and Engineering,Yangzhou University,Jiangsu Yangzhou 225127,China
关键词:
特朗伯墙空腔建筑地板采暖太阳能传热
Keywords:
Trombe Wall cavity construction floorheating solar energy heat transfer
分类号:
TU83
DOI:
10.15986/j.1006-7930.2018.06.019
文献标志码:
A
摘要:
将特朗伯墙应用于空腔建筑体系,利用太阳能蓄热墙体对玻璃与墙体之间的空气夹层进行加热,热气流上升通过空心楼板,对上层房间进行采暖.建立了此类建筑的传热模型,并对此类建筑进行了数值模拟分析,分析结果表明:空气夹层内热气流分布情况对房间的加热效果和室内的温度分布起到至关重要的影响,较之连通型特朗伯墙式空腔建筑体系,分隔型特朗伯墙式空腔建筑体系气流组织更合理,对建筑体系加热更均衡,因而对楼层较高的建筑具有更好的适用性.
Abstract:
Trombe wall is applied in cavity construction system to heat the air in the gap between the glass and the solar thermal storage wall. The updraft in the gap is led to pass through hollow floor and to supply heat to upper room. Heat transfer model is built and numerical simulation of this kind of buildings is done. The results show that the distribution of thermal airflow in air gaps plays a decisive role in heating effect and indoor temperature distribution. In comparison with the cavity construction system with connected trombe walls, the cavity construction system with disconnnected trombe walls has an appropriate airflow distribution and a uniform heating effect, which has better serviceability for high-rise buildings.

参考文献/References:

[1]MAEREFAT M, HAGHIGHI A P. Nature cooling of stand-alone houses using solar chimney and evaporative cooling cavity [J]. Renewable Energy.2010, 22 (1):1-13.

[2]LEE S, SANG H P, YEO M S, et al. An experimental study on airflow in the cavity of a ventilated roof[J]. Building and Environment.2009, 44 (7):1431-1439.
[3]ABDULLATIF B N, MAHMOUD M A. Conjugate natural convection in the roof cavity of heavy construction building during summer[J]. Applied Thermal Engineering, 2007, 27 (1):287-298.
[4]BRIGA S, ANA C, MARTINS A, et al. An analytical approach to assess the influence of the massive wall material, thickness and ventilation system on the Trombe wall thermal performance[J]. Journal of Building Physics, 2018,41(5):445-468.
[5]MA Q S, FUKUDA H, KOBATAKE T,et al. Study of a double-layer trombe wall assisted by a temperature-controlled DC fan for heating seasons[J]. Sustainability, 2017, 9 (12):2179.
[6]SHI T, LI S S, ZHANG H. Preparation of palygorskite-based phase change composites for thermal energy storage and their applications in trombe walls[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2017, 32(6):1306-1317.
[7]SUSANTI L, HOMMA H, MATSUMOTO H. A naturally ventilated cavity roof as potential benefits for improving thermal environment and cooling load of a factory building[J]. Energy and Buildings.2011, 43(1):211-218.
[8]CERNE B, MEDVED S. The dynamic thermal characteristics of lightweight building elements with a forced ventilated cavity and radiation barriers[J]. Energy and Buildings, 2005, 37(9):972-981.
[9]BIANCO V, DIANA A, MANCA O, et al. Thermal behavior evaluation of ventilated roof under summer and winter conditions[J]. Intenational Journal of Heat and Technology, 2017, 35:353-360.
[10]DAI Y J, SUMATHY K, WANG R Z, et al. Enhancement of natural ventilation in a solar house with asolar chimney and a solid adsorption cooling cavity[J]. Solar Energy,2003,74(1):65-75.
[11]ZHOU J, CHEN Y M. A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China[J]. Renewable and Sustainable Energy Reviews.2010,14(3):1321-1328.
[12]SUSANTI L, HOMMA H, H MATSUMOTO H. A laboratory experiment on natural ventilation through a roof cavity for reduction of solar heat gain[J]. Energy and Buildings.2008, 40(6):2196-2206.
[13]MANZ H, FRANK T. Thermal simulation of buildings with double-skin facades[J]. Energy and Buildings.2005, 37(3):1114-1121.
[14]EVOLA G, MARLETTA L, SICURELLA F. Simulation of a ventilated cavity to enhance the effectiveness of PCM wallboards for summer thermal comfort in buildings[J]. Energy and Buildings.2014, 70:480-489.

备注/Memo

备注/Memo:
收稿日期:2018-03-14修改稿日期:2018-10-31
基金项目:国家自然科学基金资助项目(51508494);住房和城乡建设部研究开发项目(2014-k2-022)
第一作者:刘义(1974-),男,博士,副教授,主要从事建筑热环境方面研究.E-mail:liuyi@yzu.edu.cn
更新日期/Last Update: 2019-02-16