[1]孙 昕,陈笑涵,刘兴社,等.跃温层厚度对内波破坏水温分层特性的影响[J].西安建筑科技大学学报(自然科学版),2019,51(02):275-0280.[doi:10.15986/j.1006-7930.2019.02.018]
 SUN XinCHEN XiaohanLIU Xingshe,CHENG ZhiwenLI Qing.Effects of varying pycnocline thickness on characteristics of destratification by internal waves[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):275-0280.[doi:10.15986/j.1006-7930.2019.02.018]
点击复制

跃温层厚度对内波破坏水温分层特性的影响()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年02期
页码:
275-0280
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Effects of varying pycnocline thickness on characteristics of destratification by internal waves
文章编号:
1006-7930(2019)02-0275-06
作者:
孙 昕1陈笑涵1刘兴社1成智文2李 青2
(1、西安建筑科技大学 陕西省环境工程重点实验室,西北水资源与环境生态教育部重点实验室,陕西 西安 710055;2、咸阳陶瓷研究设计院有限公司,陕西 咸阳 712000)
Author(s):
SUN Xin1CHEN Xiaohan1LIU Xingshe1 CHENG Zhiwen2LI Qing2
(1. Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Shaanxi Key Laboratory of Environmental Engineering, Xian University of Architecture and Technology, Xian 710055 China2.Xianyang Research & Design Institute, Ceramics, Xianyang 712000 China)
关键词:
内波破坏分层跃温层厚度波幅混合效率
Keywords:
internal waves destratification pycnocline thickness wave amplitude mixing efficiency
分类号:
X524
DOI:
10.15986/j.1006-7930.2019.02.018
文献标志码:
A
摘要:
为探求人工诱导内波混合技术在实际大水深分层湖泊水库中的应用效果,采用自主研制的机械混合装置和分层水库物理模型,开展对不同跃温层厚度条件下内波破坏分层的中试研究。机械混合装置出流形成水流循环,在水体分层状态下,出流动能转化为内波波能,环流减弱但依旧存在,在内波破坏水体分层过程中,变温层与等温层的水温差别逐渐减小,跃温层逐渐上移且厚度减小,直至水体分层被完全破坏。在跃温层温度梯度、水流扰动强度、水深均相同的条件下,随着跃温层厚度的增加,水体稳定系数增大,临界层内波波能损失减小,内波波幅和能流密度增加,混合效率提高,内波周期不变,波速稍有减小。内波混合水体技术应用于大水深水体中时将有更高的效率。
Abstract:
To explore the effectiveness of destratification by artificially-induced internal waves in practical deep-water stratified lakes and reservoirs, destratification experiments under different pycnocline thickness were performed with a self-designed mechanical mixing device in a physical model of stratified reservoir. The flow of the mechanical mixing device formed the flow cycle. When the water level was stratified, the outflow kinetic energy was converted into the internal wave energy, and the circulation was weakened but still existed. In the destratification process by internal waves, the temperature difference between the epilimnion and hypolimnion decreased gradually, the pycnocline became thin slowly and was impelled upwards until stratified water environment was completely destroyed. Under the same conditions of the temperature gradient of pycnocline, flow disturbance intensity and water depth, with the increase of pycnocline thickness, water stability coefficient increases, wave energy loss in critical layer reduces, the amplitude and wave energy of internal wave increase, the mixing efficiency increases, the internal wave period is constant, and the wave velocity decreases slightly. When applied to practical lakes and reservoirs, the outflow of mechanical mixing device can induce the internal waves to destroy the stratification with higher efficiency

参考文献/References:

References
[1] 孙昕,黄廷林. 湖泊水库水体污染控制[M]. 武汉:湖北科学技术出版社,2013.
SUN Xin, HUANG Tinglin. Water pollution control of lakes and reservoirs [M]. Wuhan: Hubei Science and Technology Press, 2013.
[2] M?RQUEZPACHECO H, HANSEN A M. Internal phosphorus load in a Mexican reservoir through sediment speciation analysis.[J]. Environmental Science & Pollution Research International, 2017, 24(32):24947-24952.
[3] UPADHYAY S, BIERLEIN K A, LITTLE J C, et al. Mixing potential of a surface-mounted solar-powered water mixer (SWM) for controlling cyanobacterial blooms[J]. Ecological Engineering, 2013, 61(61):245-250.
[4] SUN X, Li X L, ZHANG M D, et al. Comparison of water-lifting aerator type for algae inhibition in stratified source water reservoirs[J]. Ecological Engineering, 2014, 73: 624-634.
Lawson R, Anderson M A.Stratification and mixing in
[5] Lawson R , Anderson M A . Stratification and mixing in Lake Elsinore, California: An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake[J]. Water Research, 2007, 41(19):0-4467.
[6] 孙昕,杨潘,解岳. 分层水环境曝气诱导形成内波的过程与特性[J]. 中国环境科学,2016,36(9):2658-2664.
SUN Xin, YANG Pan, XIE Yue. Process and characteristics of aeration-induced internal waves in stratified water environments.[J]. Chinese Environmental Science, 2016, 36 (9): 2658-2664.
[7] 孙昕,叶丽丽,黄廷林,等. 破坏水库水温分层系统的能量效率估算:以金盆水库为例[J]. 中国环境科学,2014,34(11):2781-2787.
SUN Xin, YE Lili, HUANG Tinglin, et al. Estimation of energy efficiency of a destratification system for reservoirs: a case study of Jinpen Reservoir: [J]. China Environmental Science, 2014,34(11):2781-2787.
[8] 孙昕,张垚臻,陈笑涵,等. 分层水环境人工诱导内波的强化混合效果[J].中国环境科学,2017,37(8):3019-3027.
SUN Xin, ZHANG Yaozhen, CHEN Xiaohan, et al. Enhanced mixing by artificially induced internal waves in stratified water environments [J]. Chinese Environmental Science, 2017, 37 (8): 3019-3027.
[9] Mcphee-Shaw E. Boundary interior exchange: Reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins[J]. Deep-Sea Research Part II, 2015, 53(1):42-59.
[10] BROUZEt C, SIBGATULLIN I N, SCOLAN H, et al. Internal wave attractors examined using laboratory experiments and 3D numerical simulations[J]. Journal of Fluid Mechanics, 2016, 793:109-131.
[11] DIAMESSIS P J, WUNSCH S, DELWICHE I, et al. Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline[J]. Dynamics of Atmospheres & Oceans, 2014, 66(2):110-137.
[12] Dianyu Lu. Experimental Study on the effect of pycnocline thickness on Internal Solitary Wave evolution[D]. National Sun Yat-sen University, 2007.
[13] Cheng M H, Hsu R C. Effects of varying pycnocline thickness on interfacial wave generation and propagation[J]. Ocean Engineering, 2014, 88(4):34-45.
[14] 黄鹏起, 陈旭, 孟静,等. 内孤立波破碎所致混合的实验研究[J]. 海洋与湖沼, 2016, 47(3):533-539.
Huang Pengqi, Chen Xu, Meng Jing, et al. An experimental study on mixing induced by internal solitary wave breaking [J]. Oceanologia et limnologia sinica, 2016, 47 (3): 533-539.
[15] 苏梦, 王彩霞, 陈旭. 均匀流过地形生成内波的实验探究[J]. 海洋湖沼通报, 2017,41(5):1-8.
Su Meng, Wang Caixia, Chen Xu. Experimental Investigations on the Internal Waves Generated by Uniform Flow over Topography [J]. Transactions of Oceanology and Limnology, 2017 ,41(5): 1-8.
[16] Brouzet C, Sibgatullin I N, Scolan H, et al. Internal wave attractors examined using laboratory experiments and 3D numerical simulations[J]. Journal of Fluid Mechanics, 2016, 793:109-131.
[17] 邱二生. 黑河水库水质及藻类监测和水体分层研究[D]. 西安建筑科技大学, 2010.
Qiu Ersheng. Research on Water Quality, Algae Monitoring and ThermalStratification in Heihe Reservoir [D]. Xi’an University Of Architecture And Technology, 2010.
[18] 陈笑涵. 间歇水流诱导形成内波及其破坏分层特性[D]. 西安建筑科技大学,2018.
CHEN Xiaohan. Characteristics of destrstification and internal waves induced by intermittent water flow[D]. Xi’an University Of Architecture And Technology, 2010.
[19] SZYPER J P. Comparison of three mixing devices in earthen culture ponds of four different surface areas [J]. Aquacultural Engineering, 1996,15(5):381-3
[20] 徐肇廷. 海洋内波动力学[M].北京:科学出版社,1999.
XU Zhaoting. Ocean internal wave dynamics [M]. Beijing: Science Press, 1999.
[21] 周越, 张国锋. 对简谐波能量的讨论[J]. 大学物理, 2015, 34(10):15-16.

备注/Memo

备注/Memo:
收稿日期:2018-04-18 修改稿日期:2019-03-12基金项目:“十三五”国家重点研发计划(2016YFC0701001-02) ;国家自然科学基金面上项目(51178379);陕西省科技统筹创新工程计划项目 (2015KTCL-03-15)第一作者:孙昕(1971-),男,博士,教授,主要从事水质污染控制与模拟研究。E—mail:xinsunn@163.com
更新日期/Last Update: 2019-05-23