[1]苏三庆,郭欢,王威,等.含缺陷承载门式刚架的金属磁记忆检测试验研究[J].西安建筑科技大学学报(自然科学版),2020,52(01):1-8.[doi:10.15986j.1006-7930.2020.01.001]
 SU Sanqing,GUO Huan,WANG Wei,et al.Experimental study on metal magnetic memory testing of carrying gable frame with defects[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(01):1-8.[doi:10.15986j.1006-7930.2020.01.001]
点击复制

含缺陷承载门式刚架的金属磁记忆检测试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年01期
页码:
1-8
栏目:
出版日期:
2020-03-31

文章信息/Info

Title:
Experimental study on metal magnetic memory testing of carrying gable frame with defects
文章编号:
1006-7930(2020)01-0001-08
作者:
苏三庆1 郭欢12王威1胡敬余1 葛静1 李成1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.陕西工业职业技术学院 土木工程学院,陕西 咸阳 712000)
Author(s):
SU Sanqing1 GUO Huan12 WANG Wei1 HU Jingyu1 GE Jing1 LI Cheng1
(1.School of Civil Engineering, Xi’an Univ. of Arch.& Tech., Xi’an 710055, China; 2. School of Civil Engineering, Shaanxi Polytechnic Institute, Shaanxi Xianyang 712000, China)
关键词:
金属磁记忆检测 法向磁信号 磁场梯度 临界状态 应力集中
Keywords:
metal magnetic memory testing normal magnetic signals magnetic field gradient critical state stress concentration
分类号:
TU391
DOI:
10.15986j.1006-7930.2020.01.001
文献标志码:
A
摘要:
以门式刚架拟静力试验为基础,采集并分析了含缺陷刚架的梁和柱在不同荷载等级下的法向磁信号Hp(y)值,研究试件未退磁状态下法向磁信号Hp(y)值随荷载变化的规律,以及预制缺陷与磁信号的对应关系.结果表明:试件初始剩磁场强度较大,试件表面的磁信号在数值上虽然会随着荷载的变化而变化,但磁信号曲线在形状上会保持初始剩磁场的分布状态,直至外应力能够克服残余应力的影响; 试件到达临界状态时,即试件刚度急剧退化、屈服或者失稳时,法向磁信号Hp(y)值会发生突变或反转; 磁信号曲线在节点、缺陷附近由于应力集中表现出波峰波谷.因此,可以通过磁信号的突变、反转、波峰、波谷、过零点反演试件的受力状态、应力集中和缺陷的位置.
Abstract:
Based on the pseudo-static test of the defected gable frame, collecting and analyzing the beams and columns’ normal magnetic signals of Hp (y)value under different load levels. The specimen is not demagnetization, the law of Hp(y)value changing with load and the relationship between prefabricated defects and magnetic signals were studied. The results show that the initial residual magnetic field strength of the specimen is large, and the magnetic signal on the surface of the specimen will change with the changing of load in value, but the magnetic signal curve will maintain the distribution of initial residual magnetic field in shape until the external stress can overcome the influence of residual stress. When the specimen reaches the critical state, such as the stiffness of the specimen is sharply degraded, yielding or unstable, the Hp(y)value of the normal magnetic signal will be mutated or reversal. The magnetic memory signal curve at the node and near the defect shows the peak and trough due to the stress concentration. Therefore, the stress state, stress concentration and defect location of the specimen can be retrieved by means of magnetic signal mutation, inversion, wave peak, trough and zero crossing point.

参考文献/References:

[1]孙灏江. 基于磁记忆检测的建筑钢构件弯曲试验和特征参数研究[D]. 西安: 西安建筑科技大学, 2017.SUN Haojiang. Study on bending test and characteristic parameters of building steel members based on magnetic memory test [D]. Xi’an: Xi’an Univ. of Arch. &Tech,2017.
[2]王正道,姚凯,沈恺, 等. 金属磁记忆检测技术研究进展及若干讨论[J]. 实验力学, 2012, 27(2): 129-139.WANG Zhengdao, YAO Kai, SHEN Kai, et al. Research progress and discussion on metal magnetic memory detection [J]. Experimental Mechanics, 2012,27(2): 129-139.
[3]姚凯. 基于金属磁记忆法的铁磁材料早期损伤检测与评价的实验研究[D]. 北京: 北京交通大学, 2012.YAO Kai. Experimental study on early damage detection and evaluation of ferromagnetic materials based on metal magnetic memory method [D]. Beijing: Beijing Jiaotong University, 2012.
[4]冷建成. 基于磁记忆技术的铁磁性材料早期损伤诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.LENG Jiancheng. Study on early damage diagnosis of ferromagnetic materials based on magnetic memory technique [D]. Harbin: Harbin University of Technology, 2012.
[5]DUBOV A A. A study of metal peoperties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-405.
[6]SU S Q, YI S C, WANG W, et al. Bending experimental study on the relationship between strain and metal magnetic memory field of steel beam[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2018, 60(7): 380-386.
[7]YI S C, WANG W, SU S Q. Bending experimental study on metal magnetic memory signal based on von Mises yield criterion[J]. International Journal of Applied Electromagnetic and Mechanic, 2015, 49(4): 547-556.
[8]徐滨士, 董丽虹. 再制造质量控制中的金属磁记忆检测技术[M]. 北京: 国防工业出版社, 2015.XU Binshi, DONG Lihong. Metal magnetic memory detection technology in remanufacturing quality control [M]. Beijing: National Defense Industry Press, 2015.
[9]邢海燕, 孙晓军, 杨文光, 等. 不同倾斜角度角焊缝磁信号定量特征研究[J]. 压力容器, 2016, 33(12): 49-58.XING Haiyan, SUN Xiaojun, YANG Wenguang, et al. Quantitative characteristics of magnetic memory signals in fillet welds with different tilt angles [J]. Pressure Vessel, 2016,33(12): 49-58.
[10]中国国家标准化管理委员会. 钢及钢产品力学性能试验取样位置及试样制备: GB/T 2975-2018 [S]. 北京: 中国标准出版社,2018.Standardizationadministration of China. Sampling position and sample preparation for mechanical properties test of steel and steel products: GB/T 2975-2018 [S]. Beijing: Standards Press of China, 2018.
[11 ]中国国家标准化管理委员会. 金属材料低温拉伸试验方法: GB/T 13239-2006[S]. 北京: 中国标准出版社, 2006.Standardizationadministration of China. Room temperature tensile test method for metallic materials: GB/T 13239-2006 [S]. Beijing: Standards Press of China, 2002.
[12]中华人民共和国住房和城乡建设部. 门式刚架轻型房屋钢结构技术规范: GB 51022-2015[S]. 北京: 中国建筑工业出版社, 2015.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for steed structure of light-weight buildings with gabled frames: GB 51022-2015[S].Beijing: China Building Industry Press, 2015.
[13]任吉林, 林俊明. 电磁无损检测[M]. 北京: 科学出版社, 2008.REN Jilin, LIN Junming. Electromagnetic Nondestructive Testing [M]. Beijing: Science Press, 2008.

相似文献/References:

[1]苏三庆,路秀琪,王威,等.基于金属磁记忆检测技术的波纹斜腹板钢箱梁试验研究[J].西安建筑科技大学学报(自然科学版),2018,50(04):463.[doi:10.15986/j.1006-7930.2018.04.001]
 SU SanqingLU XiuqiWANG WeiDONG LiningMA Xiaoping,YE Yi.Experimental study on tilt corrugated web steel box girder based on metal magnetic memory testing technology[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(01):463.[doi:10.15986/j.1006-7930.2018.04.001]
[2]苏三庆,马小平,王威,等.有关大地磁场对金属磁记忆信号影响的数值模拟[J].西安建筑科技大学学报(自然科学版),2019,51(04):463.[doi:10.15986/j.1006-7930.2019.04.001]
 SU Sanqing,MA Xiaoping,WANG Wei,et al.Numerical simulation about the influence of geomagnetic field on metal magnetic memory signals[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(01):463.[doi:10.15986/j.1006-7930.2019.04.001]
[3]苏三庆,葛静,王威,等.门式刚架工字钢柱应力集中与磁记忆效应对应关系的试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(06):771.[doi:10.15986/j.1006-7930.2019.06.001]
 SU Sanqing,GE Jing,WANG Wei,et al.Experimental research on the corresponding relationship between stress concentration and magnetic memory effect of steel I-column of gabled framed[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(01):771.[doi:10.15986/j.1006-7930.2019.06.001]
[4]苏三庆,胡敬余,王 威,等.不同应力状态下Q235钢板件磁信号变化的试验及金相图谱研究[J].西安建筑科技大学学报(自然科学版),2019,51(05):617.[doi:10.15986/j.1006-7930.2019.010.001]
 SU Sanqing,HU Jingyu,WANG Wei,et al.Experimental study and metallographic schematic on magnetic signal changes of Q235 steel at different stages[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(01):617.[doi:10.15986/j.1006-7930.2019.010.001]

备注/Memo

备注/Memo:
收稿日期:2018-12-09修改稿日期:2020-01-08基金项目:国家自然科学基金资助项目(51878548,51578449); 陕西省自然科学基础研究计划重点基金项目(2018JZ5013)第一作者:苏三庆(1961-),男,教授,博士生导师,主要从事结构抗震设计、结构健康监测方面的研究. E-mail:sussq@xauat.edu.cn
更新日期/Last Update: 2020-04-25