[1]童申家,黄 勇,李红涛,等.除冰盐环境下在役RC桥墩时效地震易损性研究[J].西安建筑科技大学学报(自然科学版),2020,52(03):315-320.[doi:10.15986/j.1006-7930.2020.03.002]
 TONG Shenjia,HUANG Yong,LI Hongtao,et al.Study on aging seismic vulnerability of in-service RC bridge piers in deicing salt environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):315-320.[doi:10.15986/j.1006-7930.2020.03.002]
点击复制

除冰盐环境下在役RC桥墩时效地震易损性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年03期
页码:
315-320
栏目:
出版日期:
2020-06-30

文章信息/Info

Title:
Study on aging seismic vulnerability of in-service RC bridge piers in deicing salt environment
文章编号:
1006-7930(2020)03-0315-06
作者:
童申家1黄 勇2李红涛2苟 强1何 坤1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.山西省祁临高速公路有限责任公司,山西 祁县 030904)
Author(s):
TONG Shenjia1HUANG Yong2LI Hongtao2GOU Qiang1HE Kun1
(1.School of Civil Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 2.Shanxi Qilin Expressway Limited Liability Company, Shanxi Qixian 030904, China)
关键词:
在役RC桥墩 除冰盐环境 氯离子侵蚀 抗震性能评估 易损性分析
Keywords:
in-service RC bridge pier deicing salt environment chloride ion erosion seismic performance assessment vulnerability analysis
分类号:
TU422.5
DOI:
10.15986/j.1006-7930.2020.03.002
文献标志码:
A
摘要:
为研究除冰盐环境下在役RC桥墩结构抗震性能时效性.以我国北部地区某高速路段在役RC桥墩氯离子含量检测数据为基础,考虑氯离子扩散系数的时变性,构建适用于除冰盐环境下的氯离子扩散修正模型,并结合氯离子侵蚀对材料性能劣化的影响,进行在役RC桥墩时效地震易损性分析,计算地震作用下桥墩达到或超过某种特定损伤状态的失效概率.结果表明:在相同的地震作用下,随服役时间的增加,桥墩达到或超过某种特定损伤状态下的失效概率显著增大; 桥墩从严重破坏至完全破坏的过渡延性最优,即桥墩在达到严重破坏时不会快速倒塌.
Abstract:
In order to study the timeliness of seismic performance of in-service RC bridge pier structures in deicing salt environment, Based on the chloride ion content detection data of the in-service RC bridge pier in a highway section in northern China, Considering the time variability of the chloride diffusion coefficient, Construct a modified chloride ion diffusion model suitable for deicing salt environment, and combine the effects of chloride ion erosion on the degradation of material properties to perform ageing seismic vulnerability analysis of active RC bridge pier. Calculate failure probability of bridge pier reaching or exceeding a certain damage state under earthquake. The results show that under the same earthquake, With the increase of service time, the probability of failure of a bridge pier reaching or exceeding a certain damage state increases significantly. The ductility of the bridge pier from severe damage to complete damage is optimal, that is, the bridge pier will not collapse quickly when it reaches severe damage.

参考文献/References:

[1] 周履.桥梁耐久性发展的历史与现状[J].桥梁建设,2000(4):58-61.
ZHOU Lü.History and current status of bridge durability development[J].Bridge construction,2000(4):58-61.
[2] 赵尚传.海洋环境中氯离子侵蚀与混凝土碳化诱发钢筋锈蚀失效概率的对比分析[J].公路,2008(4):163-166.
ZHAO Shangchuan.Comparative analysis of chlorine Ion erosion and concrete carbonation induced corrosion failure probability in marine environment[J].highway,2008(4):163-166.
[3] 梁岩,罗小勇.锈蚀钢筋混凝土压弯构件恢复力模型研究[J].地震工程与工程振动,2013,33(4):202-209.
LIANG Yan,LUO Xiaoyong.Research on restoring force model of corroded reinforced concrete compression members[J].Earthquake Engineering and Engineering Vibration,2013,33(4):202-209.
[4] AKIYAMA M,FRANGOPOL D M,MATSUZAKI H. Life-cycle Reliability of RC bridge piers under seismic and airborne chloride hazards[J].Earthquake Engineering & Structural Dynamics,2011,40(15):1671-1687.
[5] WALRAVEN,JOOST C,Stoelhorst. Model code for service life design.bulletin 34 [M].Dick Taylor & Francis Ltd,2008.
[6] 余红发,孙伟,马海燕,等.盐湖地区钢筋混凝土结构使用寿命的预测模型及其应用[J].东南大学学报(自然科学版),2002,32(4):638-642.
YU Hongfa,SUN Wei, MA Haiyan,et al.Prediction model of service life of reinforced concrete structures in salt lake area and its application[J].Journal of Southeast University( Natural Science Edition),2002,32(4):638-642.
[7] 胡思聪.考虑氯离子侵蚀的桥梁地震易损性及抗震加固策略研究[D].长沙:湖南大学,2017.
HU Sicong.Study on seismic vulnerability and seismic strengthening strategy of bridges considering chloride ion erosion[D].Changsha:Hunan University,2017.
[8] 张平生,卢梅,李晓燕.锈蚀钢筋的力学性能[J].工业建筑,1995,25(9):41-44.
ZHANG Pingsheng,LU Mei,LI Xiaoyan.Mechanical properties of corroded steel bars[J].Industrial Building,1995,25(9):41-44.
[9] CORONELLI D, GAMBAROVA P. Structural assessment of corroded reinforced concrete beams:modeling guidelines[J]. ASCE Journal of Structural Engineering,2004,130(8):1214-1224.
[10]HWANG H, LIU J B, CHIU Y H. Seismic fragility analysis of highway bridges [R]. Mid-America Earthquake Center Technical Report, 2001:47-54.
[11]重庆交通科研设计院.公路桥梁抗震设计细则:JTG/T B02-01-2008[S].北京:人民交通出版社,2008.
Chongqing Communications Research and Design Institute.Seismic design rules for highway bridges:JTG/T B02-01-2008[S].Beijing:China Communications Press,2008.
[12]冯杰.桥梁结构地震易损性分析研究[D].成都:西南交通大学,2010.
FENG Jie.Analysis of seismic vulnerability of bridge structures[D].Chengdu:Southwest Jiaotong University, 2010.
[13]靳晓燕,阮建凑.不同墩高对钢筋混凝土桥梁抗震性能影响[J].公路工程,2018,43(4):139-144.
JIN Xiaoyan WAN Jiancou.Influence of Different Pier Heights on Seismic Performance of Reinforced Concrete Bridges[J].Road construction,2018,43(4):139-144.
[14]姚蓓,张启伟.钢斜拉桥运营期耐久性与易损性监测[J].中外公路,2016,36(1):90-94.
YAO Pei,ZHANG Qiwei.Durability and vulnerability monitoring of steel cable-stayed bridges during operation period[J].Chinese and Foreign Roads,2016,36(1):90-94.
[15]吴文朋.考虑不确定性的钢筋混凝土桥梁地震易损性研究[D].长沙:湖南大学,2016.
WU Wenpeng.Study on seismic vulnerability of reinforced concrete bridges considering uncertainties[D].Changsha:Hunan University,2016.

备注/Memo

备注/Memo:
收稿日期:2019-09-05 修改稿日期:2020-03-25
基金项目:山西省交通运输厅科技计划项目(SJ-2016-16);
第一作者:童申家(1953-),男,教授,博士生导师,研究方向为桥梁与隧道工程.E-mail:13991336070@163.com;
通信作者:何坤(1995-),男,硕士生,研究方向为桥梁与隧道工程.E-mail:1473170267@qq.com.
更新日期/Last Update: 2020-07-30