[1]王桂林,杨 洋,孙 帆,等.边坡失效概率分布特性影响因素研究[J].西安建筑科技大学学报(自然科学版),2020,52(04):463-469,484.[doi:10.15986-j.1006-7930.2020.04.001]
 WANG Guilin,YANG Yang,SUN Fan,et al.Study on factors affecting the distribution characteristics of slope safety failure probability[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(04):463-469,484.[doi:10.15986-j.1006-7930.2020.04.001]
点击复制

边坡失效概率分布特性影响因素研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年04期
页码:
463-469,484
栏目:
出版日期:
2020-08-28

文章信息/Info

Title:
Study on factors affecting the distribution characteristics of slope safety failure probability
文章编号:
1006-7930(2020)04-0463-07
作者:
王桂林12杨 洋 1孙 帆1向林川1
(1.重庆大学 土木工程学院,重庆 400045; 2. 库区环境地质灾害防治国家地方联合工程研究中心,重庆 400045)
Author(s):
WANG Guilin12 YANG Yang1 SUN Fan1 XIANG Linchuan1
(1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing 400045, China)
关键词:
边坡 失效概率 Copula函数 稳定安全系数 变异水平 置信区间
Keywords:
slope failure probability Copula function stability safety factor variation level confidence interval
分类号:
TU43
DOI:
10.15986-j.1006-7930.2020.04.001
文献标志码:
A
摘要:
受诸多因素的影响,边坡失效概率不是定值,实际上是具有一定置信度水平的置信区间分布的.以无限边坡为例,借助Bootstrap法判定抗剪强度参数最优边缘分布函数,采用Copula函数描述抗剪强度参数间互相关性,构建抗剪强度参数的联合分布函数,并从分布特性的角度研究了抗剪强度参数联合分布函数、边坡稳定性设计控制标准及参数变异水平对边坡失效概率的影响.研究表明:针对本算例,五类联合分布函数所得失效概率相近,其中No.16函数所得失效概率相对较大,Gaussian函数所得结果相对较小, Copula加权组合函数所得失效概率精确度相对较高; 随着边坡设计控制标准的提高,则边坡稳定安全系数取值不断增加,边坡失效概率逐渐减小且趋近于0; 边坡失效概率均随δφ的增加而增加,随δc的增加呈“增加 - 减小 - 增加”的趋势,并且边坡失效概率对内摩擦角φ的变异水平较黏聚力c更为敏感.
Abstract:
Affected by many factors, slope failure probability is not a fixed value, but a confidence interval distribution with a certain level of confidence. Taking the infinite slope as aexample, the optimal edge distribution functions of the shear strength parameters are determined by the Bootstrap method, the cross-correlation between the parameters is described by Copula function and the joint distribution function is constructed. The influence of the joint distribution functions, the slope stability safety factor and the variation level of shear strength parameters on slope failure probability are studied from the aspect of distribution characteristics. The research shows that the slope failure probabilities obtained by five joint distribution functions are similar. Specifically, the failure probability obtained by No.16 function is larger relatively, of which Gaussian Copula function is smaller, and Copula weighted combination function is more accurate; With the improvement of the slope design control standard, the value of the slope stability safety factor increases continuously, and the slope failure probability gradually decreases and approaches 0; The slope failure probability increases with the increase of δφ, and there is a tendency of “increasing-decreasing-increasing” with the increase of δc; The slope failure probability is more sensitive to the internal friction angle φ than the variation of cohesion c.

参考文献/References:

[1] 郑荣跃,梧松.基于Spencer法的边坡稳定性可靠度指标分析[J]. 岩土力学,2006(1):147-150,154.
ZHENG Rongyue, WU Song. Reliability index analysis of slope stability based on Spencer’s method.[J]. Rock and Soil Mechanics, 2006(1):147-150,154.
[2] 朱彬,裴华富,杨庆.基于高斯过程回归的响应面法及边坡可靠度分析[J]. 岩土工程学报,2019,41(S1):209-212.
ZHU Bin, PEI Huafu, YANG Qing. Gaussian process regression-based response surface method and reliability analysis of slopes[J]. Chinese Journal of Geotechnical Engineering, 2019,41(S1):209-212.
[3] 邓志平,牛景太,潘敏,等.考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法[J]. 岩土工程学报,2019,41(6):1083-1090.
DENG Zhiping, NIU Jingtai, PAN Min, et al. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019,41(6):1083-1090.
[4] 陈祖煜,徐佳成,孙平,等.重力坝抗滑稳定可靠度分析:(一)相对安全率方法[J]. 水力发电学报, 2012,31(3):148-159.
CHEN Zuyu, XU Jiacheng, SUN Ping, et al. Reliability analysis on sliding stability of gravity dams: Part I, An approach using criterion of safety margin ratio[J]. Journal of Hydroelectric Engineering, 2012,31(3): 148-159.
[5] 陈祖煜,徐佳成,陈立宏,等.重力坝抗滑稳定可靠度分析:(二)强度指标和分项系数的合理取值研究[J]. 水力发电学报,2012,31(3):160-167.
CHEN Zuyu, XU Jiacheng, CHEN Lihong et al.Reliability analysis on sliding stability of gravity dams: Part II,Determination of shear strength parameters and partial factors[J]. Journal of Hydroelectric Engineering, 2012,31(3):160-167.
[6] 李典庆,周强,曹子君.基于广义可靠指标相对安全率的岩土工程设计安全判据[J]. 岩土力学,2019, 40(10): 3977-3986.
LI Dianqing, ZHOU Qiang, CAO Zijun. Safety criteria for geotechnical design based on the generalized reliability ratio of safety margin[J]. Rock and Soil Mechanics, 2019, 40(10):3977-3986.
[7] 范明桥,盛金保.土强度指标φ, c的互相关性[J]. 岩土工程学报,1997(4):100-104.
FAN Mingqiao, SHENG Jinbao. Cross-correlation of soil strength index φ, c[J]. Chinese Journal of Geotechnical Engineering, 1997(4):100-104.
[8] DAS G.K., HAZRA B., GARG A, et al. Stochastic hydro-mechanical stability of vegetated slopes: An integrated Copula based framework[J]. Catena, 2018, 160:124-133.
[9] 唐小松,李典庆,周创兵,等.基于Copula函数的基桩荷载-位移双曲线概率分析[J]. 岩土力学,2012,33(1):171-178.
TANG Xiaosong, LI Dianqing, ZHOU Chuangbing et al. Probabilistic analysis of load-displacement hyperbolic curves of single pile using Copula[J]. Rock and Soil Mechanics,2012,33(1):171-178.
[10]WU X Z. Probabilistic slope stability analysis by a Copula-based sampling method[J]. Computational Geosciences,2013, 17(5):739-755.
[11]张蕾,唐小松,李典庆,等.基于Copula函数的岩土结构物系统可靠度分析[J]. 岩土力学,2016,37(1):193-202.
ZHANG Lei, TANG Xiaosong,LI Dianqing et al. System reliability analysis of geotechnical structures based on the Copula function[J]. Rock and Soil Mechanics, 2016, 37(1):193-202.
[12]中华人民共和国国家标准编写组. 建筑边坡工程技术规范:GB 50330-2013)[S]. 北京:中国建筑工业出版社,2014.
The National Standards Compilation Group of People’s Republic of China. Technical code for building slope engineering:GB50330-2013[S]. BeiJing: China Architecture & Building Press,2014.
[13]张卫民.土体力学参数对土坡稳定安全系数影响分析[D]. 杭州:浙江大学, 2006.
ZHANG Weimin. Influence of soil parameters on soil slope safety factor of stability[D]. Hangzhou: Zhejiang University,2006.
[14]黄景华,陈朝晖,莫玻,等.参数特性及分布形式对边坡稳定可靠性的影响分析[J]. 四川大学学报(工程科学版),2014,46(3):23-30.
HUANG Jinghua, CHEN Zhaohui, MO Bo et al. Influence analysis of characteristics and distribution types of soil parameters on slope reliability[J]. Journal of Sichuan University(Engineering Science Edition), 2014,46(3):23-30.
[15]唐小松,李典庆,曹子君,等.有限数据条件下边坡可靠度分析的Bootstrap方法[J]. 岩土力学,2016,37(3):893-901,911.
TANG Xiaosong, LI Dianqing, CAO Zijun et al. bootstrap method for analyzing slope reliability based on limited shear-strength parameter data [J]. Rock and Soil Mechanics, 2016,37(3):893-901,911.
[16] BEfron. 1977 Rietz2dx Lecture-Bootstrap methods: Another look at the Jackknife[J]. The Annals of Statistics. 1979, 7(1):1-26.
[17]陈立宏,陈祖煜,刘金梅.土体抗剪强度指标的概率分布类型研究[J]. 岩土力学,2005(1): 37-40,45.
CHEN Lihong, CHEN Zuyu, LIU Jinmei. Probability distribution of soil strength[J]. Rock and Soil Mechanics. 2005,26(1): 37-40,45.
[18]苏永华,何满潮,孙晓明.大子样岩土随机参数统计方法[J]. 岩土工程学报, 2001,23(1): 117-119.
SU Yonghua, HE Manchao, SUN Xiaoming. Approach onasymptotic approximations of polynomials for probability density function of geotechnics random parameters[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1):117-119.
[19]ZHE Luo, ATAMTURKTUR Sez, JUANG Hsein. Bootstrapping for characterizing the effect of uncertainty in sample statistics for braced excavations[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(1):13-23.
[20]Harianto Rahardjo, Alfrendo Satyanaga, Eng-choon Leong et al. Variability of residual soil properties[J]. Engineering Geology,2012,141: 124-140.
[21]ASklar. Fonctions de répartition àn dimensions et leurs marges[J]. Publications de l’Institut de Statistique de l’Université de Paris,1959, 8:229-231.
[22]AKAIKE, H. New look at statistical-model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.
[23]ZHANG Lan. Multivariate hydrological frequency analysis and risk mapping[D]. Baton Rouge: Louisiana State University, 2005.
[24]Genest Christian, Remillard Bruno, Beaudoin David. Goodness of fit tests for copulas: A review and a power study[J]. Insurance Mathmatics & Economics, 2009, 44(2): 199-213.
[25]KOJADINOVIC Ivan, YAN Jun. Modeling multivariate distributions with continuous margins using the Copula R Package[J]. Journal of Statistical Software, 2010, 34(9): 1-20.
[26]NELSEN R B. An introduction tocopulas [M]. Bolin: Springer Science & Business Media, 2007.
[27]SHAMIRI A, HAMZAH N A, PIRMORADIAN A. Tail dependence estimate in financial market risk management: Clayton-gumbel Copula approach[J]. Sains Malaysiana, 2011, 40(8):927-935.
[28]BUCKLAND S T; BURNHAM K P; AUGUSTIN N H. Model selection: An integral part of inference[J]. Biometrics, 1997, 53(2):603-618.
[29]骆飞.小样本岩土参数统计特征估计及边坡稳定可靠性分析[D]. 重庆, 西南交通大学,2017.
LUO Fei. Smallsamples and reliability analysis of slope stability [D]. Chongqing, Southwest Jiaotong University, 2017.

相似文献/References:

[1]杨 帆1,侯克鹏2,谢永利1.岩质高边坡岩体力学参数确定及稳定性研究[J].西安建筑科技大学学报(自然科学版),2011,43(06):845.[doi:DOI:10.15986/j.1006-7930.2011.06.013]
 ,Research on methods to determine mechanical parameters andstability of rock mass from high rock slop[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(04):845.[doi:DOI:10.15986/j.1006-7930.2011.06.013]

备注/Memo

备注/Memo:
收稿日期:2020-02-08 修改稿日期:2020-07-13
基金项目:国家重点研发计划课题资助项目(2018YFC1505501)
第一作者:王桂林(1970-),男,教授,工学博士,从事岩土工程与地质工程的科研与教学.E-mail: glw@cqu.edu.cn
通讯作者:杨洋(1994-),女,硕士生,主要从事岩土工程领域的研究.E-mail: 2950110427@qq.com
更新日期/Last Update: 2020-09-25