[1]张衍林,马小秋.珊瑚礁地层大直径打入式钢管桩承载力计算及其时间效应[J].西安建筑科技大学学报(自然科学版),2020,52(05):723-729.[doi:10.15986j.1006-7930.2020.05.015 ]
 ZHANG Yanlin,MA Xiaoqiu.Calculation and time effect of bearing capacity of large diameter driven steel pipe pile in coral reef[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(05):723-729.[doi:10.15986j.1006-7930.2020.05.015 ]
点击复制

珊瑚礁地层大直径打入式钢管桩承载力计算及其时间效应()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年05期
页码:
723-729
栏目:
出版日期:
2020-10-28

文章信息/Info

Title:
Calculation and time effect of bearing capacity of large diameter driven steel pipe pile in coral reef
文章编号:
1006-7930(2020)05-0725-05
作者:
张衍林1马小秋2
(1.重庆水利电力职业技术学院 水利工程学院,重庆 402160; 2.吉林建筑大学 基础科学部,吉林 长春 130000)
Author(s):
ZHANG Yanlin1MA Xiaoqiu2
(1.School of Hydraulic Engnineering, ChongQing Water Resources and Electeic Engineering College,Chongqing
关键词:
珊瑚礁 钢管桩 端阻力 侧阻力 时间效应
Keywords:
coral reef steel pipe pile end resistance side resistance time effect
分类号:
TU473
DOI:
10.15986j.1006-7930.2020.05.015
文献标志码:
A
摘要:
某大桥是国家“一带一路”标志性项目,其桩基础置于弱胶结、多孔隙及高脆性的珊瑚礁灰岩中,传统的桩基设计方法与承载力评估标准并不适用,急需展开研究.开展了大量打入式钢管桩高应变测试,并将测试结果与规范计算结果进行了对比分析,结果表明:(1)钢管桩在打入过程中,其侧壁的礁灰岩结构遭到破坏,产生剪缩与软化现象,无法提供有效的嵌固力,只能以摩擦的方式提供较低的摩阻力,导致钢管桩承载力实测值均远小于规范计算值;(2)珊瑚礁具有结构性,无法产生剪胀效应并持续提供侧摩阻力的增长,致使钢管桩承载力的时间效应不明显,承载力只增长了16%;(3)提出了适用于珊瑚礁地层嵌岩钢管桩的承载力计算方法,建议选择强度相对较高的礁灰岩作为持力层,以桩端受力为主,避免盲目加大桩长或桩径.
Abstract:
The bridge is a landmark project of “one belt and one road” in the country. Its pile foundation is located in the coral reef limestone with weak cementation, porosity and high brittleness. The traditional pile foundation design method and the bearing capacity evaluation standard are not applicable, so there is an urgent need for research. A large number of high strain tests of driven steel pipe piles were carried out, and the test results were comparative analyzed with the calculated results of the code. In-situ static load tests of cast-in-place bored piles were carried out, which were verified by the mechanical tests and numerical simulation methods of coral reef limestone and pile foundation interface. Results show that:(1)During the driving process, the reef limestone structure of the side wall of the steel pipe pile to be damaged, resulting in the phenomenon of shear shrinkage and softening, which can't provide an effective embedment force, so it can only provide a lower friction resistance in the way of friction, resulting in the measured value of the bearing capacity of the steel pipe pile is far less than the calculated value in the code;(2)The coral reef is structural, which can't produce the shear expansion effect and continue to provide the increase of side friction resistance, so that the time effect of the bearing capacity of steel pipe pile is not obvious, and the bearing capacity only increased by 16%;(3)The bearing capacity calculation method for rock socketed steel pipe pile in coral reef is put forward. It is suggested that reef limestone with relatively high strength should be selected as the bearing layer, and the stress at the pile end should be taken as the main force to avoid blindly increasing the pile length or pile diameter.

参考文献/References:

[1] 孟庆山,范超,曾卫星,等.南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学,2019,40(1):183-190. MENG Qingshan, FAN Chao, ZENG Weixing, et al. Dynamic mechanical properties test of coral reef limestone in Nansha Islands[J]. Rock and Soil Mechanics, 2019,40(1): 183-190.
[2] 贺迎喜,董志良,杨和平,等.吹填珊瑚礁砂(砾)用作海岸工程填料的压实性能研究[J]. 中外公路, 2010, 30(6): 34-37. HE Yingxi, DONG Zhiliang, YANG Heping, et al. Research on compaction performance of dredging coral reef sand(gravel)as a coastal engineering filler[J]. China & Foreign Highway, 2010, 30(6): 34-37.
[3] 李宏刚.高原山区内陆湖泊、水库区域桥梁桩基、承台施工[J]. 公路,2017(10):134-136. LI Honggang. Construction of pile foundations and caps of bridges in inland lakes and reservoirs in plateau mountainous areas[J]. Highway,2017(10):134-136.
[4] 栾晓强,吕海军,韩薇薇.二道松花江特大桥临时栈桥设计与施工[J]. 公路,2016, 61(6):164-169. LUAN Xiaoqiang, LÜ Haijun, HAN Weiwei. Design and construction of temporary trestle bridge of erdao Songhua River Bridge[J]. Highway,2016, 61(6):164-169.
[5] AKILI W. On design and installation of driven piles in coral deposits: a case study from the red sea coast of Saudi Arabia[J]. Geotechnical Special Publication, 2015,35(12):1036-1051.
[6] 刘崇权,单华刚,汪稔.钙质土工程特性及其桩基工程[J]. 岩石力学与工程学报,1999,18(3): 331-331. LIU Chongquan, SHAN Huagang, WANG Ren. Engineering characteristics of calcareous soil and its pile foundation engineering[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(3): 331-331.
[7] 王爱溪,林治平,冯光华.珊瑚礁灰岩中钢管桩动静承载力测试分析[J]. 施工技术,2018, 47(19): 87-89,97. WANG Aixi, LIN Zhiping, FENG Guanghua. Test and analysis of dynamic and static bearing capacity of steel pipe piles in coral reef limestone[J]. Construction Technology,2018, 47(19): 87-89,97.
[8] Akili W. On Design and Installation of Driven Piles in Coral Deposits: A Case Study from the Red Sea Coast of Saudi Arabia[J]. Geotechnical Special Publication, 2015(3):1036-1051.
[9] 许宁.浅谈珊瑚礁岩土的工程地质特性[J]. 岩土工程学报, 1989, 11(4):81-88. XU Ning. On the engineering geological characteristics of coral reef rocks[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(4):81-88.
[10]程新生. 珊瑚岛礁跨海大桥的勘察实践及工程意义[J]. 水运工程, 2018, 545(8):183-188. CHENG Xinsheng. Survey practice and engineering significance of the Coral Island Reef Cross-sea Bridge[J]. Water Transport Engineering, 2018, 545(8):183-188.
[11]张家铭, 邵晓泉, 王霄龙,等.沉桩过程中钙质砂颗粒破碎特性模拟研究[J]. 岩土力学, 2015, 36(1): 272-278. ZHANG Jiaming, SHAO Xiaoquan, WANG Xiaolong et al. Simulation study on the crushing characteristics of calcareous sand particles during pile driving[J]. Rock and Soil Mechanics, 2015, 36(1): 272-278.
[12]祝敏杰.钻孔灌注桩在珊瑚礁地质条件下的施工工艺[J]. 中国港湾建设,2010,13(6):58-60. ZHU Minjie. The construction technology of bored piles under the geological conditions of coral reefs[J]. China Harbor Construction,2010,13(6):58-60.
[13]江浩.钙质砂中桩基工程承载性状研究[D]. 武汉:中国科学院武汉岩土力学研究所, 2009. JIANG Hao. Research on bearing behavior of pile foundation in calcareous sand[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2009.
[14]GAVIN K G, IGOE D J P, Kirwan L. The effect of ageing on the axial capacity of piles in sand[C]. Proceedings of the ICE-Geotechnical Engineering, 2013,166(2):122-130.
[15]TAVENAS F, AUDY R. Limitations of the driving formulas for predicting the bearing capacities of piles in sand[J]. Canadian Geotechnical Journal,1972,9(1):47-62.
[16]RIMOY S P. Ageing and axial cyclic loading studies of displacement piles in sands[D]. London, UK: Imperial College, 2013.
[17]RIMOY S P, SILVA R, JARDINE R J, et al. Field and model investigations into the influence of age on axial capacity of displacement piles in silica sands[J]. Geotechnique,2015, 65(7):576-589.
[18]ZHANG C, YANG Z X, NGUYEN G D, et al. Theoretical breakage mechanics and experimental assessment of stresses surrounding piles penetrating into dense silica sand[J]. Geotechnique Letters, 2014,4(1):11-16.
[19]CHOW F, JARDINE R J. Investigations into the behavior of displacement piles for offshore foundations.[D]. London: University of London,1997.

备注/Memo

备注/Memo:
收稿日期:2020-04-18 修改稿日期:2020-09-12
基金项目:吉林建筑大学2018年度高等教育教学研究资金资助课题(XJY201809)
第一作者:张衍林(1983-),男,讲师,从事建筑工程管理、建筑工程施工、BIM技术应用研究.E-mail: 14953239@qq.com

更新日期/Last Update: 1900-01-01