[1]张彦玲,张建林,李运生.柔性人行悬索桥在不同人流量下人致振动分析[J].西安建筑科技大学学报(自然科学版),2020,52(06):779-787.[doi:10.15986/j.1006-7930.2020.06.002 ]
 ZHANG Yanling,ZHANG Jianlin,LI Yunsheng.Analysis of human-induced vibration for flexible suspension footbridge under different pedestrian flow[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):779-787.[doi:10.15986/j.1006-7930.2020.06.002 ]
点击复制

柔性人行悬索桥在不同人流量下人致振动分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年06期
页码:
779-787
栏目:
出版日期:
2020-12-20

文章信息/Info

Title:
Analysis of human-induced vibration for flexible suspension footbridge under different pedestrian flow
文章编号:
1006-7930(2020)06-0779-09
作者:
张彦玲1张建林12李运生1
(1.石家庄铁道大学 土木工程学院,河北 石家庄 050043; 2.中铁上海设计院集团有限公司,上海 200070)
Author(s):
ZHANG Yanling1 ZHANG Jianlin12 LI Yunsheng1
(1.School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; 2.China Railway Shanghai Design Institute Group Co.,Ltd., Shanghai 200070, China)
关键词:
柔性人行悬索桥 人流量 自振特性 人致振动 行人舒适度
Keywords:
flexible suspension footbridge pedestrian flow natural vibration characteristics human-induced vibration pedestrian comfort
分类号:
U441.3; U448.11
DOI:
10.15986/j.1006-7930.2020.06.002
文献标志码:
A
摘要:
为了研究运营过程中不同人流量对于柔性人行悬索桥自振特性及人致振动响应的影响,以某地锚式(70+360+60)m柔性人行悬索桥为工程实例,采用Midas/Civil软件建立了有限元模型,计算了不同人流量下该人行悬索桥的自振频率.参考德国人行桥规范EN03-2007,计算了同步人群谐波荷载下主梁的竖向及侧向加速度,并进行了行人舒适度评价.计算结果表明:柔性人行悬索桥自振基频较低,行人步频所对应的均为较高阶的振动模态; 考虑人群质量后,主梁的各阶自振频率和行人谐波荷载下的加速度均较未考虑时减小,且随着人流量的增加,主梁的最大竖向及侧向加速度极值均随之增大.人群质量对主梁竖向和侧向加速度的影响不同,其结果与行人竖向和侧向谐波荷载不同的折减系数规律相关; 考虑人群质量后,该悬索桥在人流量为0.5人/m2时,行人处于很舒适状态,在1.0~2.0人/m2处于中等舒适状态.
Abstract:
In order to study the influence of different pedestrian flow on the natural vibration characteristics, vertical and lateral acceleration of suspension footbridges during operation, the finite element model of a(70+360+60)m ground-anchored suspension footbridge was established using Midas/Civil software, and the natural vibration frequencies were calculated. Based on the German pedestrian bridge standard EN03-2007, the vertical and lateral acceleration of the main girder under the synchronous crowd harmonic load were obtained, and the pedestrian comfort was evaluated. Results indicate that the natural vibration frequencies of the flexible suspension footbridge are rather low due to the flexibility of the bridge, which makes the pedestrian step frequency close to high-order vibration modes. Pedestrian mass makes the natural frequencies and the acceleration of the main girder decrease, and the maximum vertical and lateral acceleration improve with the increasing of the pedestrian mass. The pedestrian mass has different influence on the vertical and lateral acceleration of the main girder, which is related with the different reduction factor of the vertical and lateral pedestrian harmonic load. Considering the pedestrian mass, the suspension footbridge in this paper is in very comfort state under the pedestrian flow of 0.5 P/m2, and in medium comfort state under the pedestrian flow of 1.0~2.0 P/m2.

参考文献/References:

[1] 北京市市政工程研究院. 城市人行天桥与人行地道技术规范:CJJ69-95[S]. 北京:中国建筑工业出版社,1996.
Beijing Municipal Engineering Research Institute. Technical specifications of urban pedestrian overcrossing and underpass: CJJ69-95[S].Beijing: China Architecture Publishing & Media Co., Ltd, 1996.
[2]聂建国, 陈宇, 樊健生. 步行荷载作用下单跨人行桥振动的均方根加速度反应谱法[J].土木工程学报, 2010, 43(9): 109-116, 130.
NIE Jianguo, CHEN Yu, FAN Jiansheng. RMS acceleration response spectrum method for single-span foot bridges under pedestrian load[J].China Civil Engineering Journal, 2010, 43(9): 109-116, 130.
[3]操礼林, 曹栋, 张志强, 等. 随机人群行走下人行桥动力特性参数及加速度响应[J]. 东南大学学报(自然科学版), 2018, 48(6): 1028-1035.
CAO Lilin, CAO Dong, ZHANG Zhiqiang, et al. Dynamic characteristic parameter and acceleration response of footbridge under random crowd walking[J].Journal of Southeast University(Natural Science Edition), 2018, 48(6): 1028-1035.
[4]李泉, 樊健生, 聂建国. 双向行走激励条件下人行桥的随机振动问题研究 [J]. 工程力学, 2010, 27(7): 74-81.
LI Quan, FAN Jiansheng, NIE Jianguo. Random vibration of footbridge generated by crowds' two-way walking [J]. Engineering Mechanics, 2010, 27(7): 74-81.
[5]李泽民, 吴冬雁, 刘宣含, 等. 真实步伐荷载作用下人行桥振动及共振加速分析[J]. 噪声与振动控制, 2019, 39(6): 164-168.
LI Zemin, WU Dongyan, LIU Xuanhan, et al. Vibration and resonance response analysis of footbridges under actual walking load[J].Noise and Vibration Control, 2019, 39(6): 164-168.
[6]谢旭, 钟婧如, 张鹤, 等. 人-桥竖向耦合振动计算方法[J]. 振动与冲击, 2016, 35: 108-114.
XIE Xu,ZHONG Jingru,ZHANG He,et al. Calculation method for human-bridge vertically coupled vibration [J]. Journal of Vibration and Shock, 2016, 35: 108-114.
[7]CAPRANI C C, AHMADI E. Formulation of human structure interaction system models for vertical vibration [J].Journal of Sound and Vibration, 2016, 377: 346-367.
[8]贾布裕, 颜全胜, 余晓琳, 等. 考虑行人随机性的人行桥人致横向振动稳定性分析[J]. 工程力学, 2019, 36(1):155-164.
JIA Buyu, YAN Quansheng, YU Xiaolin, et al. Stability analysis on pedestrian-induced lateral vibration of footbridges considering pedestrian stochastic excitation[J].Engineering Mechanics, 2019, 36(1):155-164.
[9]BOCIAN M, MACDONALD J H G, BURN J F, et al. Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment [J]. Engineering Structures, 2015, 105:62-76.
[10]CARROLL S P, OWEN J S, HUSSEIN M F M. Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model[J].Journal of Sound & Vibration, 2014, 333(22): 5865-5884.
[11]ELSA Caetano, ÁLVARO Cunha, FILIPE Magalh(~overa)es, et al. Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 1: Assessment of dynamic behavior [J]. Engineering Structures, 2010, 32: 1069-1081.
[12]钱骥, 孙利民. 大跨径人行桥人致振动舒适性评估及减振措施[J]. 上海交通大学学报, 2011, 45(5): 677-681.
QIAN Ji, SUN Limin. Comfort evaluation and vibration reduction design of long span footbridges [J]. Journal of Shanghai Jiaotong University, 2011, 45(5): 677-681.
[13]乔云强,吴桂楠. 单主缆悬索桥人致振动研究及减振控制[J]. 世界桥梁, 2018, 46(2): 68-73.
QIAO Yunqiang, WU Guinan. Study of human-induced vibration on suspension bridge with one main cable and vibration mitigation control[J].World Bridges, 2018, 46(2): 68-73.
[14]朱前坤, 李宏男, 杜永峰, 等. 不同行走步速下人行桥振动舒适度定量化评估 [J]. 工程力学, 2016, 33(10):97-104.
ZHU Qiankun, LI Hongnan, DU Yongfeng, et al. Quantitative evaluation of vibration serviceability of pedestrian brigde under different walking speed[J].Engineering Mechanics, 2016, 33(10):97-104.
[15]Eleonora Lai, Carmelo Gentile, Maria Gabriella Mulas. Experimental and numerical serviceability assessment of a steel suspension footbridge [J]. Journal of Constructional Steel Research, 2017, 132: 16-28.
[16]景天虎, 李桅, 李青宁, 等. 悬索桥主缆线形确定的常用精确解析算法比较及电算高效实现方法研究[J]. 西安建筑科技大学学报(自然科学版), 2011, 43(6): 821-830.
JING Tianhu, LI Wei, LI Qingning, et al. Comparison on common precise numerical analytical algorithms to determine main cables curve shape in suspension bridges and study on highly effective methods of computation [J]. J. Xi'an Univ. of Arch, & Tech.( Natural Science Edition), 2011, 43(6): 821-830.
[17]IVANOVIc'S, Pavic A, Reynolds P. Vibration serviceability of footbridges under human-induced excitation: a literature review[J].Journal of Sound and Vibration, 2005, 279: 1-74.
[18]Research Fund for Coal and Steel. HiVoSS: Design of Footbridges[S].Guideline EN03,Germany:Hivoss,2008.

备注/Memo

备注/Memo:
收稿日期:2020-06-20 修改稿日期:2020-11-16
基金项目:国家自然科学基金青年项目(51908382); 河北省自然科学基金青年项目(E2019210311)
第一作者:张彦玲(1973-),女,博士,教授,主要从事组合结构桥梁方面的研究.E-mail:06mzhang@163.com

更新日期/Last Update: 2020-12-20