[1]赵 祥,高永苗,周铁钢,等.新型变阻尼式TMD的力学性能试验研究[J].西安建筑科技大学学报(自然科学版),2020,52(06):797-805+839.[doi:10.15986/j.1006-7930.2020.06.004 ]
 ZHAO Xiang,GAO Yongmiao,ZHOU Tiegang,et al.Mechanical performance test and parameter optimization of a new variable damping TMD[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):797-805+839.[doi:10.15986/j.1006-7930.2020.06.004 ]
点击复制

新型变阻尼式TMD的力学性能试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年06期
页码:
797-805+839
栏目:
出版日期:
2020-12-20

文章信息/Info

Title:
Mechanical performance test and parameter optimization of a new variable damping TMD
文章编号:
1006-7930(2020)06-0797-09
作者:
赵 祥1高永苗1周铁钢1李万琴2丁怡洁1
(1.西安建筑科技大学 土木工程学院, 陕西 西安 710055; 2.青海省高原绿色建筑与生态社区重点实验室, 青海 西宁 810008)
Author(s):
ZHAO Xiang1 GAO Yongmiao1 ZHOU Tiegang1 LI Wanqin2 DING Yijie1
(1.School of Civil Engineering, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China; 2.The Key Lab of Plateau Building and Eco-community in Qinghai, Xining 810008, China)
关键词:
变阻尼式TMD 力学性能试验 遗传算法 Simulink仿真 减震效果
Keywords:
variable damping TMD mechanical test genetic algorithm Simulink simulation damping effect
分类号:
TU352.1; TU317. 1; TU311.41
DOI:
10.15986/j.1006-7930.2020.06.004
文献标志码:
A
摘要:
研发了一种新型变阻尼式TMD,阐述了它的构造设计及工作原理,通过对其进行的力学性能试验,研究了与该减震装置组成成分相关的三个参数(质量、刚度和液体黏度)变化时对其力学性能的影响.试验结果表明:当该减震装置组成部分相应的刚度、质量和液体黏度增大时,该减震装置对结构施加的等效阻尼力也随之增大,而且其在大震时对结构的减振效果更好.接着利用遗传算法,对该减震装置的阻尼系数,频率比,限制位移(相对结构的最大许可位移)等参数进行了优化分析,并得出了它们的最优取值.最后,为了研究该变阻尼式TMD对结构的减震效果,利用Simulink工具对未安装和安装该变阻尼式TMD的弹性单自由度结构进行了仿真分析; 仿真结果表明:该变阻尼式TMD能够很好的控制结构的加速度和位移响应,且随着地震动幅值的增大,它的减震效果也逐渐增大,这与力学性能试验的结果较好吻合.
Abstract:
In this paper, a new type of variable damp TMD is developed. Its structure design and working principle are described. Through mechanical properties test, the effects of three parameters(mass, stiffness and liquid viscosity)related to the components of the damping device on its mechanical properties are studied. Test results show that when the corresponding stiffness, mass and liquid viscosity of the components of the damping device increase, the equivalent damping force exerted by the damping device on the structure will also increase, and the effect of the damping device on the structure will be better in large earthquakes. Then, the parameters such as damping coefficient, frequency ratio and limited displacement(maximum allowable displacement relative to the structure)of the damping device are optimized and analyzed by genetic algorithm, and their optimal values are obtained. Finally, in order to study the effect of the variable damp TMD on the structure, Simulink tool is used to simulate and analyze the elastic single-degree-of-freedom structure which is not installed or installed with the variable damp TMD. Tesults show that the variable damp TMD can control the acceleration and displacement response of the structure well, and with the increase of the amplitude of the ground motion, its damping effect increases gradually, which is in good agreement with the results of the mechanical properties test.

参考文献/References:

[1] 李晓玮,施卫星. 人行天桥 MTMD 减振控制的鲁棒性研究[J]. 结构工程师,2012, 28(4): 7 -12.
LI Xiaowei, SHI Weixing. Research on robustness of vibration control of pedestrian bridges using multi degree of freedom passive tuned mass-dampers[J].Structure Engineers, 2012, 28(4): 7-12.
[2]MCNAMARA R J. Tuned mass dampers for building[J]. Journal of Structural Engineering, ASCE, 1977, 103(9): 1785-1798.
[3]GU M, XIANG H. Optimization of TMD for suppressing buffeting response of long-span bridges[J].Journal of Wind Engineering & Industrial Aerodynamics, 1992, 42(1-3):1383-1392.
[4]WIRSCHING P H, YAO J T P. Safety design concepts for seismic structures[J]. Computers & Structures, 1973, 3(4):809-826.
[5]DONG R G. Vibration-absorber effect under seismic excitation[J]. Journal of the Structural Division, 1976, 102(10): 2021-2031.
[6]OHNO S, WATARI A, SANO I. Optimum tuning of the dynamic damper to control response of structures to earthquake ground motion[C]//Proc.6th World Conf.on Earthq.Eng.India: New Delli:[s.n.],1977, 3: 157-161.
[7]JAGADISH K S, PRASAD B K R, RAO P V. The inelastic vibration absorber subjected to earthquake ground motions[J].Earthquake Engineering & Structural Dynamics, 1979, 7(4):317-326.
[8]薛建阳,翟磊,闫春生.高层转运站结构的动力分析及振动控制研究[J].西安建筑科技大学学报(自然科学版),2015,47(4):477-481.
XUE Jianyang, ZHAI Lei, YAN Chunsheng. Dynamic analysis and research on vibration control of high-rise transfer station structures[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(4):477-481.
[9]袁俊,王虎长,胡建民,等.1 000 kV 大跨越输电线路钢管塔风振响应及振动控制研究[J].西安建筑科技大学学报(自然科学版),2014,46(3):360-366.
YUAN Jun, WANG Huchang, HU Jianmin, et al. Wind-induced dynamic response and vibration control of steel tubular tower in the 1000 kV large span crossing transmission line[J]. J of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(3):360-366.
[10]成祎民,尚鹏,闫春生,等.多层转运站结构的振动控制与加固分析[J].西安建筑科技大学学报(自然科学版),2015,47(1):82-86.
CHENG Yimin, SHANG Peng, YAN Chunsheng. Analysis on vibration control and repair of truck and coal transporting trestle[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(1):82-86.
[11]DEN Hartog J P. Mechanical vibrations[M].4th ed. NY: Mc Graw Hill, 1956.
[12]WARBURTON G B. Optimum absorber parameters for various combinations of response and excitation parameters [J]. Earthquake Engineering & Structural Dynamics, 1982, 10(3):381-401.
[13]ROBERSON R E. Synthesis of a non-linear dynamic vibration absorber [J]. Journal of Franklin Institute, 1952, 254(3):205-220.
[14]李春祥. 多重调谐质量阻尼器最优动力特性的趋势[J]. 上海交通大学学报, 2002, 36(11):1652-1655.
LI Chunxiang. Trend of optimal dynamic characteristics of multiple tuned mass dampers [J]. Journal of Shanghai Jiaotong University, 2002, 36(11): 1652-1655.
[15]刘纲,杨溥,彭闯. 基于多目标遗传算法的阻尼器抗震加固方案研究[J]. 建筑结构学报, 2016, 37(S1): 55-61.
LIU Gang, YANG Pu, PENG Chuang. Research on seismic strengthening scheme with damper using multi-objective genetic algorithm[J]. Journal of Building Structures, 2016, 37(S1): 55-61.
[16]RANA R, SOONG T T. Parametric study and simplified design of tuned mass dampers[J]. Engineering Structures, 1998, 20(3):193-204.

备注/Memo

备注/Memo:
收稿日期:2020-06-16 修改稿日期:2020-11-16
基金项目:国家自然科学基金青年科学基金资助项目(51708446); 青海省高原绿色建筑与生态社区重点实验室开放基金计划资助项目(KLKF-2018-007); 陕西省重点研发计划项目重点产业创新链(群)(2020ZDLNY06-03)
第一作者:赵 祥(1975-),男,博士,副教授,主要从事结构振动控制研究.E-mail:441937590@qq.com 通信作者:高永苗(1995-),女,硕士研究生, 主要从事结构振动控制研究.E-mail:345273078@qq.com

更新日期/Last Update: 2020-12-20