[1]侯智坚,王爱涛,公彦昆,等.泡沫轻质土力学性能与干湿循环试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):80-85.[doi:10.15986/j.1006-7930.2021.01.011]
 HOU Zhijian,WANG Aitao,GONG Yankun,et al.Study on the mechanical property and wettingdrying cycle durability of cement foamed lightweight soil[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(01):80-85.[doi:10.15986/j.1006-7930.2021.01.011]
点击复制

泡沫轻质土力学性能与干湿循环试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年01期
页码:
80-85
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Study on the mechanical property and wettingdrying cycle durability of cement foamed lightweight soil
文章编号:
1006-7930(2021)01-0080-06
作者:
侯智坚1王爱涛2公彦昆1
(1.山东大学 齐鲁交通学院,山东 济南 250002; 2.山东高速集团有限公司,山东 济南 250098)
Author(s):
HOU Zhijian1 WANG Aitao2 GONG Yankun1 et al
(1.School of Qilu Transportation, Shandong University, Jinan 250002, China; 2.Shandong Hi-speed Group Co., Ltd., Jinan 250098, China)
关键词:
泡沫轻质土 粉质黏土 无侧限抗压强度 干湿循环 耐久性
Keywords:
foamed lightweight soil silty clay unconfined compressive strength wetting-drying cycle durability
分类号:
TU501
DOI:
10.15986/j.1006-7930.2021.01.011
文献标志码:
A
摘要:
为降低泡沫轻质土工程费用、提高其工程应用性,分别采用0%、25%、33%、40%粉质黏土替代水泥制备泡沫轻质土,开展了不同土掺量泡沫轻质土的无侧限抗压强度试验与劈裂抗拉强度试验,评价了不同土掺量泡沫轻质土的干湿循环耐久性.结果表明:泡沫轻质土的强度随土掺量的增加而降低,当土掺量由0%提高至40%时,28 d抗压强度和劈裂抗拉强度的变化范围分别为2.88~1.02 MPa和0.57~0.2 MPa,且两者具有很好的线性关系.随着土掺量增大,泡沫轻质土的抗干湿循环能力不断下降,干湿循环后,40%土掺量的泡沫轻质土软化系数为0.75,强度由1.02 MPa降低至0.78 MPa.基于现有设计规范要求,提出泡沫轻质土作为路床区填料建议土掺量应小于33%,作为路堤区填料建议土掺量为33%~40%.
Abstract:
In order to reduce the engineering cost of foam lightweight soil and improve its engineering applicability, this paper used the silty clay to replace zero, 25%, 33% and 40% cement to prepare foamed lightweight soil(FLS), respectively. The unconfined compressive strength tests and splitting tensile strength tests of FLS were carried out with different soil contents. The dry and wet durability of FLS with different soil contents was evaluated based on the water absorption tests, drying tests and wetting-drying cycle tests. Results showed that the strength of FLS decreased with the increase of soil contents. When the soil contents increased from zero% to 40%, the compressive strength and splitting tensile strength of FLS cured after 28 days decreased from 2.88 MPa to 1.02 MPa and 0.57 MPa to 0.2 MPa, respectively, which presented good linear relationship. With the increase of soil contents, the FLS was much easier to degrade under wetting-drying cycle. When the soil content increased to 40%, the softening coefficient of FLS reduced to 0.75, and the strength decreased from 1.02MPa to 0.78MPa after wetting-drying cycle. It is suggested that the amount of soil contents in FLS should be less than 33% as roadbed filling and 33%~40% as embankment filling.

参考文献/References:

[1]徐伟. 浅析旧路拓宽存在的问题及处理措施[J].城市道桥与防洪, 2017(12): 34-36, 59.
XU Wei. Elementaryanalysis on existing problems and treatment measures in widening of old road[J].Urban Roads Bridges & Flood Control, 2017(12): 34-36, 59.
[2]陈忠平, 王树林. 气泡混合轻质土及其应用综述[J].中外公路, 2003(5): 117-120.
CHEN Zhongping, WANG Shulin. Review of bubble mixed light soil and its application[J].Journal of China & Foreign Highway, 2003(5): 117-120.
[3]HORPIBULSUK S, SUDDEEPONG A. Strength and compressibility of lightweight cemented clays[J].Applied Clay Science, 2012, 69: 11-21.
[4]NERAMITKORNBURI A, HORPIBULSUK S, SHEN S L, et al. Engineering properties of lightweight cellular cemented clay-fly ash material[J].Soils and Foundations, 2015, 55(2): 471-483.
[5]DU Y, YU B, LIU K, et al. Physical, hydraulic, and mechanical properties of clayey soil stabilized by lightweight alkali-activated slag geopolymer[J].Journal of Materials in Civil Engineering, 2016, 29: 1-10.
[6]SUKSIRIPATTANAPONG C, HORPIBULSUK S, BOONGRASAN S, et al. Unit weight, strength and microstructure of a water treatment sludge-fly ash lightweight cellular geopolymer[J].Construction & Building Materials, 2015, 94(30): 807-816.
[7]DU Y,HORPIBULSUK S, WEI M L, et al. Modeling compression behavior of cement-treated zinc-contaminated clayey soils[J].Soils and Foundations. 2014. 54(5): 1018-1026.
[8]NERAMITKORNBURI A, HORPIBULSUK S, SHEN S L,et al. Durability against wetting-drying cycles of sustainable Lightweight Cellular Cemented construction material comprising clay and fly ash wastes[J].Construction & Building Materials, 2015, 77(15): 41-49.
[9]陈金威, 刘勇, 石苏意, 等. 不同掺料泡沫轻质土的强度特性[J].长沙理工大学学报(自然科学版), 2016, 13(4): 15-22.
CHEN Jinwei, LIU Yong, SHI Suyi, et al. Strength characteristics of foam lightweight soil with different admixture[J].Journal of Changsha University of Science & Technology(Natural Science), 2016, 13(4): 15-22.
[10]乔欢欢, 卢忠远, 严云, 等. 掺合料粉体种类对泡沫混凝土性能的影响[J].中国粉体技术, 2008, 14(6): 38-41.
QIAO Huanhuan, LU Zhongyuan, YAN Yun, et al. Influence of filler type on properties of foamed concrete[J].China Powder Science and Technology, 2008, 14(6):38-41.
[11]BAGHERI A, SAMEA S A. Parameters influencing the stability of foamed concrete[J].Journal of Materials in Civil Engineering, 2018, 30(6): 1-7.
[12]苏谦, 赵文辉, 王亚威, 等. 泡沫轻质混凝土单轴循环加卸载试验研究[J].铁道标准设计, 2016, 60(8): 21-25.
SU Qian, ZHAO Wenhui, WANG Yawei, et al. Experiment of foamed lightweight concrete under uniaxial cyclic loading and unloading conditions[J].Railway Standard Design, 2016, 60(8): 21-25.
[13]黄振宇, 隋莉莉, 王芳. 超轻质高延性水泥基材料力学性能研究[J].西安建筑科技大学学报(自然科学版), 2019, 51(2): 223-229.
HUANG Zhenyu, SUI Lili, WANG Fang. Mechanical properties of ultra-lightweight high ductility cement composites[J].J. of Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(2): 223-229.
[14]周红, 车轶, 陈庚, 等. 混凝土立方体与圆柱体劈裂抗拉强度尺寸效应研究[J].混凝土, 2010(8): 13-15.
ZHOU Hong, CHE Yi, CHEN Geng, et al. Size effect on tensile splitting strength of concrete cubes and cylinders[J].Concrete, 2010(8): 13-15.
[15]LU Y, LI Q. About the dynamic uniaxial tensile strength of concrete-like materials[J].International Journal of Impact Engineering, 2011, 38(4): 171-180.
[16]ZHENG W, KWAN A, LEE P. Direct tension test of concrete[J].Materials Journal, 2001, 98(1): 63-71.
[17]徐礼华, 刘素梅, 李彦强. 丹江口水库区岩石软化性能试验研究[J].岩土力学, 2008(5): 1430-1434.
XU Lihua, LIU Sumei, LI Yanqiang. Experimental studies on rock softening properties in Danjiangkou reservoir area[J].Rock and Soil Mechanics, 2008(5): 1430-1434.
[18]KAMON M, NONTANANANDH S, KATSUMI T. Utilization of stainless-steel slag by cement hardening[J].Soils and Foundations, 1993, 33(3): 118-129.

备注/Memo

备注/Memo:
收稿日期:2020-06-15 修改稿日期:2021-01-08
基金项目:国家自然科学基金青年基金资助项目(51608306); 教育部博士后科学基金资助项目(2016M590636); 山东省交通厅科技发展计划基金资助项目(2016B20,2019B47_1); 山东大学青年学者未来计划基金资助项目(2019WLJH60)
第一作者:侯智坚(1996-),硕士生,主要从事路基材料研究.E-mail:zhijianhou@foxmail.com
通讯作者:蒋红光(1985-),副教授,硕士生导师,从事非饱和土静动力学、轨道交通和道路工程等研究.E-mail:hongguang_jiang@sdu.edu.cn
更新日期/Last Update: 2021-02-28