[1]常志英,黄廷林.基于VOF数值模拟的扬水曝气器提水性能研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):117-125.[doi:10.15986/j.1006-7930.2021.01.016]
 CHANG Zhiying,HUANG Tinglin.Research on the water lifting performance of waterlifting aerator based on VOF[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(01):117-125.[doi:10.15986/j.1006-7930.2021.01.016]
点击复制

基于VOF数值模拟的扬水曝气器提水性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年01期
页码:
117-125
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Research on the water lifting performance of waterlifting aerator based on VOF
文章编号:
1006-7930(2021)01-0117-09
作者:
常志英12黄廷林1
(1.西安建筑科技大学 环境与市政工程学院,陕西省环境工程重点实验室,陕西 西安 710055; 2.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055)
Author(s):
CHANG Zhiying12 HUANG Tinglin1
(1.School of Environmental and Municipal Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 2.School of Building Sevices Science and Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China)
关键词:
扬水曝气器 提水性能 数值模拟
Keywords:
water-lifting aerator water-lifting performance numerical simulation
分类号:
TU451
DOI:
10.15986/j.1006-7930.2021.01.016
文献标志码:
A
摘要:
为探析扬水曝气器内部流动特性,本文采用VOF(Volume of Fluid)法对扬水曝气器流场进行数值模拟,通过比对模拟和实验结果验证了模型的可靠性,详细分析了扬水曝气器内部气弹形成和释放过程及其流动特征,讨论了不同曝气速率和气室体积大小对扬水曝气器提水性能的影响.研究结果表明:数值模拟和试验结果间的误差在6%以内,该方法可靠; 利用VOF方法有效模拟了气室中气体的聚集、气弹形成及释放过程,并发现气体进入上升筒中所形成的并不是一个整体气弹,气弹后还尾随许多中小气泡,研究加深了对扬水曝气器内部流动特性的认识; 出口平均流速随着曝气速率的增大而增大,随着气室体积的减小而增大,并在参数的计算范围内给出了其拟合关系式; 其规律与丛海兵给出的结论一致,进一步印证了本文方法在扬水曝气器性能研究中的适用性,为后续扬水曝气器各项参数的优化设计提供了可靠的分析手段,具有较大的工程应用价值.
Abstract:
In order to analyze the internal flow characteristic of the water-lifting aerator, VOF(volume of fluid)method was used to simulate the flow field of the water-lifting aerator, the reliability of the VOF model was verified by comparing the simulation results with the experimental results, the formation and release process and flow characteristics of the air piston in the water-lifting aerator were analyzed in detail, the effects of different aeration rates and air chamber volume on the water lifting performance of the water-lifting aerator were discussed.The results show that: the error between numerical simulation and experimental results is less than 6%, so the method is reliable; VOF method is used to effectively simulate the process of gas accumulation, gas formation and release in the gas chamber, and it is found that the gas entering the ascending tube is not a whole piston, and many small and medium bubbles are also followed after the piston, which deepens the understanding on the flow characteristics of the internal flow in the water-lifting aerator The results show that: the average outlet velocity increases with the increase of aeration rate, and increases with the decrease of air chamber volume, and its fitting relationship is given within the calculation range of parameters; the law is consistent with the conclusion given by Cong Haibing, which further verifies the applicability of the method in the performance study of the water-lifting aerator, and provides a reference for the optimization design of various parameters of the water-lifting aerator, has great engineering application value.

参考文献/References:

[1]黄廷林. 水源水库水质污染原位控制与改善是饮用水水质安全保障的首要前提[J].给水排水,2017,43(1):1-3.
HUANG Tinglin. In-situ control of water pollution and improvement of water quality in water source reservoirs is the primary precondition for the safety of drinking water[J].Water & Wastewater Engineering, 2017, 43(1): 1-3.69.
[2]丛海兵,黄廷林,缪晶广,等. 水体修复装置—扬水曝气器的开发[J].中国给水排水, 2005, 21(3): 41-45.
CONG Haibing, HUANG Tinglin, MIAO Jing-guang, et al. Development of rehabilitation device for water body-water lifting aerator[J].China Water & Wastewater, 2005, 21(3): 41-45.
[3]丛海兵,黄廷林,缪晶广,等. 扬水曝气器的水质改善功能及提水、充氧性能研究[J].环境工程学报, 2007,(1): 7-13.
CONG Haibing, HUANG Tinglin, MIAO Jing-guang, et al. Study on water improvement function, capacity of lifting water and oxygenation of a water-lifting aerator[J].Chinese Journal of Environmental Engineering, 2007(1): 7-13.
[4]丛海兵. 扬水曝气水源水质改善技术研究[D].西安:西安建筑科技大学, 2007.
CONG Haibing, Studies on source water quality improvement technology of water-lifting and aerator[D].Xi’an: Xi’an Univ.of Arch.&Tech, 2007.
[5]CONG Haibing, HUANG Tinglin, CHAI Beibei, et al. An new mixing-oxygenating technology for water quality improvement of urban water source and its implication in a reservoir. Renewable Energy[J],2009,34(9): 2054-2060
[6]黄廷林,丛海兵,柴蓓蓓. 饮用水水源水质污染控制[M].北京:中国建筑工业出版社, 2009.
HUANG Tinglin, CONG Haibing, CHAI Beibei. Source water quality pollution and control. [M] Beijing: China Architecture & Building Press.2009.
[7]CONG Haibing, HUANG Tinglin, CHAI Beibei. A Water-Circulating Aerator: optimizing structure and predicting water flow rate and oxygen transfer[J].Journal of Hydraulic Engineering,2011,137(6):659-667.
[8]朱伟峰. 基于CFD的扬水曝气器外围流场及曝气室流场模拟[D].西安:西安建筑科技大学, 2008.
ZHU Weifeng, Numerical simulations on the periphery flow field of water-lifting aerator and the flow field of aeration chamber[D].Xi’an: Xi’an Univ.of Arch.&Tech.2008.
[9]王进行. 温度分层及水深对扬水曝气器流场影响的CFD模拟[D].西安:西安建筑科技大学, 2010.
WANG Jinxing, Numerical simulations of effects of thermal stratification and water depth on flow around water-lifting aerator[D].Xi’an: Xi’an Univ.of Arch.&Tech.2010.
[10]赵伟丽. 深水型水库扬水曝气混合原位控藻数值模拟[D].西安:西安建筑科技大学, 2013
ZHAO Weili, Simulation of algal inhibition using In-situ water-lifting aeration technology in deep-water reservoirs[D].Xi’an: Xi’an Univ.of Arch.&Tech.2013.
[11]SUN Xin, ZHAO Weili, HUANG Tinglin. Effects of water depth on algae control in stratified reservoirs using in-situ water-lifting aeration technology[J].Advanced Materials Research, 2013,663: 977-981.
[12]SUN Xin, ZHAO Weili, HUANG Tinglin. Effects of temperature gradient on algae inhibition zone in source water reservoirs using in-situ water-lifting aeration technology[J].Advanced Materials Research,2013, 663: 870-875.
[13]龙圣海.峡谷分层型水源水库水质变化特征及水温结构模拟研究[D].西安:西安建筑科技大学,2017.
LONG Shenghai.Water quality characteristics and water temperature simulation of a canyon-shaped,stratified,source water reservoir[D].Xi’an:Xi’an Univ.of Arch.&Tech,2017.
[14]LI Yang, HUANG Tinglin, ZHOU Zizhen, et al. Effects of reservoir operation and climate change on thermal stratification of a canyon-shaped reservoir, in northwest China[J].Water Science & Technology Water Supply, 2018, 18(2): 418-429.
[15]李扬.分层型水源水库水温模拟及扬水曝气系统运行优化研究[D].西安:西安建筑科技大学,2018.
LI Yang, Water temperature simulation of a stratified source water reservoir and optimal operation of water-lifting aerator system[D] Xi’an:Xi’an Univ.of Arch.&Tech.2018.
[16]孙昕,张梦丹,黄廷林,等. 扬水曝气器类型对分层水库藻类控制效果的影响[J].环境科学研究,2014,(12): 1479-1485.
SUN Xin, ZHANG Mengdan, HUANG Tinglin, et al. Comparison of water-lifting aerator type for algae inhibition in stratified reservoirs[J].Research of Environmental Sciences,2014,(12): 1479-1485.
[17]张梦丹. 深水型水库扬水曝气系统优化[D].西安:西安建筑科技大学,2014.
ZHANG Mengdan, System optimization of water-lifting aeration in deep-water reservoirs[D].Xi’an:Xi’an Univ.of Arch.&Tech.2014.
[18]SUN X, LI X L, ZHANG M D, et al. Comparison of water-lifting aerator type for algae inhibition in stratified source water reservoirs[J].Ecological Engineering, 2014, 73: 624-634.
[19]HIRT C W,NICHOLS B D. Volume of fluid(VOF)method for dynamics of free boundaries[J].Journal of Computational Physics,1981,39(1):201-225.
[20]GUO F, CHEN B. Numerical study on Taylor bubble formation in a micro-channel T-junction using VOF method[J].Microgravity Science and Technology, 2009, 21(1): 51-58.
[21]WANG L J, JIA Y, YAN X K, et al. Gas-liquid numerical simulation on micro-bubble generator and optimization on the nozzle to throat spacing[J].Asia-Pacific Journal of Chemical Engineering, 2015, 10(6): 893-903.
[22]丁国栋,陈家庆,蔡小垒,等. 文丘里管式微气泡发生器内单气泡碎化行为的数值模拟[J].化工进展, 2020, 39(7): 2590-2598.
DING Guodong, CHEN Jiaqing, CAI Xiaolei, et al. Numerical simulation of single bubble breaking behavior in Venturi microbubble generator[J].Chemical Industry and Engineering Progress, 2020, 39(7): 2590-2598.
[23]BRACKBILL J U,KOTHE D B,ZEMACH C. A continuum method for modeling surface tension[J].Journal of computational physics, 1992, 100(2):335-354.

备注/Memo

备注/Memo:
收稿日期:2020-10-29 修改稿日期:2021-1-13
基金项目:国家自然科学基金资助项目(51979217); 陕西省重点研发计划项目(2019ZDLSF06-02)
第一作者:常志英(1983-),男,博士生,主要从事扬水曝气系统数值模拟研究.E-mail:changzhiying@xauat.edu.com
通讯作者:黄廷林(1962-),男,教授,博导,主要研究方向为水处理理论与技术和水质微污染控制与水资源保护.E-mail:huangtinglin@xauat.edu.com
更新日期/Last Update: 2021-02-28