参考文献/References:
[1]黄廷林. 水源水库水质污染原位控制与改善是饮用水水质安全保障的首要前提[J].给水排水,2017,43(1):1-3.
HUANG Tinglin. In-situ control of water pollution and improvement of water quality in water source reservoirs is the primary precondition for the safety of drinking water[J].Water & Wastewater Engineering, 2017, 43(1): 1-3.69.
[2]丛海兵,黄廷林,缪晶广,等. 水体修复装置—扬水曝气器的开发[J].中国给水排水, 2005, 21(3): 41-45.
CONG Haibing, HUANG Tinglin, MIAO Jing-guang, et al. Development of rehabilitation device for water body-water lifting aerator[J].China Water & Wastewater, 2005, 21(3): 41-45.
[3]丛海兵,黄廷林,缪晶广,等. 扬水曝气器的水质改善功能及提水、充氧性能研究[J].环境工程学报, 2007,(1): 7-13.
CONG Haibing, HUANG Tinglin, MIAO Jing-guang, et al. Study on water improvement function, capacity of lifting water and oxygenation of a water-lifting aerator[J].Chinese Journal of Environmental Engineering, 2007(1): 7-13.
[4]丛海兵. 扬水曝气水源水质改善技术研究[D].西安:西安建筑科技大学, 2007.
CONG Haibing, Studies on source water quality improvement technology of water-lifting and aerator[D].Xi’an: Xi’an Univ.of Arch.&Tech, 2007.
[5]CONG Haibing, HUANG Tinglin, CHAI Beibei, et al. An new mixing-oxygenating technology for water quality improvement of urban water source and its implication in a reservoir. Renewable Energy[J],2009,34(9): 2054-2060
[6]黄廷林,丛海兵,柴蓓蓓. 饮用水水源水质污染控制[M].北京:中国建筑工业出版社, 2009.
HUANG Tinglin, CONG Haibing, CHAI Beibei. Source water quality pollution and control. [M] Beijing: China Architecture & Building Press.2009.
[7]CONG Haibing, HUANG Tinglin, CHAI Beibei. A Water-Circulating Aerator: optimizing structure and predicting water flow rate and oxygen transfer[J].Journal of Hydraulic Engineering,2011,137(6):659-667.
[8]朱伟峰. 基于CFD的扬水曝气器外围流场及曝气室流场模拟[D].西安:西安建筑科技大学, 2008.
ZHU Weifeng, Numerical simulations on the periphery flow field of water-lifting aerator and the flow field of aeration chamber[D].Xi’an: Xi’an Univ.of Arch.&Tech.2008.
[9]王进行. 温度分层及水深对扬水曝气器流场影响的CFD模拟[D].西安:西安建筑科技大学, 2010.
WANG Jinxing, Numerical simulations of effects of thermal stratification and water depth on flow around water-lifting aerator[D].Xi’an: Xi’an Univ.of Arch.&Tech.2010.
[10]赵伟丽. 深水型水库扬水曝气混合原位控藻数值模拟[D].西安:西安建筑科技大学, 2013
ZHAO Weili, Simulation of algal inhibition using In-situ water-lifting aeration technology in deep-water reservoirs[D].Xi’an: Xi’an Univ.of Arch.&Tech.2013.
[11]SUN Xin, ZHAO Weili, HUANG Tinglin. Effects of water depth on algae control in stratified reservoirs using in-situ water-lifting aeration technology[J].Advanced Materials Research, 2013,663: 977-981.
[12]SUN Xin, ZHAO Weili, HUANG Tinglin. Effects of temperature gradient on algae inhibition zone in source water reservoirs using in-situ water-lifting aeration technology[J].Advanced Materials Research,2013, 663: 870-875.
[13]龙圣海.峡谷分层型水源水库水质变化特征及水温结构模拟研究[D].西安:西安建筑科技大学,2017.
LONG Shenghai.Water quality characteristics and water temperature simulation of a canyon-shaped,stratified,source water reservoir[D].Xi’an:Xi’an Univ.of Arch.&Tech,2017.
[14]LI Yang, HUANG Tinglin, ZHOU Zizhen, et al. Effects of reservoir operation and climate change on thermal stratification of a canyon-shaped reservoir, in northwest China[J].Water Science & Technology Water Supply, 2018, 18(2): 418-429.
[15]李扬.分层型水源水库水温模拟及扬水曝气系统运行优化研究[D].西安:西安建筑科技大学,2018.
LI Yang, Water temperature simulation of a stratified source water reservoir and optimal operation of water-lifting aerator system[D] Xi’an:Xi’an Univ.of Arch.&Tech.2018.
[16]孙昕,张梦丹,黄廷林,等. 扬水曝气器类型对分层水库藻类控制效果的影响[J].环境科学研究,2014,(12): 1479-1485.
SUN Xin, ZHANG Mengdan, HUANG Tinglin, et al. Comparison of water-lifting aerator type for algae inhibition in stratified reservoirs[J].Research of Environmental Sciences,2014,(12): 1479-1485.
[17]张梦丹. 深水型水库扬水曝气系统优化[D].西安:西安建筑科技大学,2014.
ZHANG Mengdan, System optimization of water-lifting aeration in deep-water reservoirs[D].Xi’an:Xi’an Univ.of Arch.&Tech.2014.
[18]SUN X, LI X L, ZHANG M D, et al. Comparison of water-lifting aerator type for algae inhibition in stratified source water reservoirs[J].Ecological Engineering, 2014, 73: 624-634.
[19]HIRT C W,NICHOLS B D. Volume of fluid(VOF)method for dynamics of free boundaries[J].Journal of Computational Physics,1981,39(1):201-225.
[20]GUO F, CHEN B. Numerical study on Taylor bubble formation in a micro-channel T-junction using VOF method[J].Microgravity Science and Technology, 2009, 21(1): 51-58.
[21]WANG L J, JIA Y, YAN X K, et al. Gas-liquid numerical simulation on micro-bubble generator and optimization on the nozzle to throat spacing[J].Asia-Pacific Journal of Chemical Engineering, 2015, 10(6): 893-903.
[22]丁国栋,陈家庆,蔡小垒,等. 文丘里管式微气泡发生器内单气泡碎化行为的数值模拟[J].化工进展, 2020, 39(7): 2590-2598.
DING Guodong, CHEN Jiaqing, CAI Xiaolei, et al. Numerical simulation of single bubble breaking behavior in Venturi microbubble generator[J].Chemical Industry and Engineering Progress, 2020, 39(7): 2590-2598.
[23]BRACKBILL J U,KOTHE D B,ZEMACH C. A continuum method for modeling surface tension[J].Journal of computational physics, 1992, 100(2):335-354.