[1]何泉,盛昂昂,刘大龙.围护结构保温设计中非稳态计算方法适用性研究[J].西安建筑科技大学学报(自然科学版),2021,53(04):561-567.[doi:10.15986/j.1006-7930.2021.04.013]
 HE Quan,SHENG Angang,LIU Dalong.Study on the applicability of unsteady calculation method in thermal insulation design of enclosure structure in cold area[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(04):561-567.[doi:10.15986/j.1006-7930.2021.04.013]
点击复制

围护结构保温设计中非稳态计算方法适用性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年04期
页码:
561-567
栏目:
出版日期:
2021-08-28

文章信息/Info

Title:
Study on the applicability of unsteady calculation method in thermal insulation design of enclosure structure in cold area
文章编号:
1006-7930(2021)04-0561-07
作者:
何泉盛昂昂刘大龙
(西安建筑科技大学 建筑学院,陕西 西安 710055)
Author(s):
HE QuanSHENG AngangLIU Dalong
(School of Architecture,Xi’an Univ. of Arch. & Tech.,Xi’an 710055,China)
关键词:
保温设计 动态模拟 内壁面温度 热流 耗热量
Keywords:
thermal insulation design dynamic simulation surface inside face temperature heat flux heat consumption
分类号:
TU111.19+5.2
DOI:
10.15986/j.1006-7930.2021.04.013
文献标志码:
A
摘要:
以寒冷地区不同太阳能资源区的城市居住建筑为研究对象,分别在太阳能富集地区选取拉萨、敦煌,次富集地区选取西安、北京,采用稳态和非稳态方法进行传热计算,分析了冬至日的逐时外墙内壁面温度和墙体热流强度的变化规律,以及建筑能耗.研究发现:在拉萨,采用两种方法计算的温度和热流差异都最大,而西安的相应差异最小.表明:在太阳能富集地区,非稳态计算的采暖能耗更低; 当室外温度逐时差值日均温度大于1.9℃时,两种方法计算耗热量的差值大于10%; 随着两者差值日均温度的增大,两种方法计算的耗热量差值呈显著增长趋势,差值最大可达60%以上.因为太阳辐射造成的室外温度波动显著,此时围护结构传热采用非稳态更为合适,与动态能耗模拟的结果更接近.
Abstract:
Taking the urban residential buildings in different solar energy resource areas in the cold area as the research object,Lhasa and Dunhuang are selected in the solar energy enrichment area,Xi’an and Beijing are selected in the sub-enrichment area,and the heat transfer is calculated by steady-state and unsteady-state methods. The variation rules of interior wall temperature and wall heat flux intensity of hourly exterior wall during the winter solstice,as well as building energy consumption are analyzed. It is found that the difference of temperature and heat flux calculated by the two methods is the largest in Lhasa,while the corresponding difference is the smallest in Xi’an. The results show that in solar energy enrichment areas,the heating energy consumption of unsteady calculation is lower; when the hourly difference of outdoor temperature is more than 1.9℃,the difference of heat consumption calculated by the two methods is more than 10%; with the increase of the daily average temperature of the difference between the two methods,the difference of heat consumption calculated by the two methods shows a significant growth trend,and the maximum difference is more than 60%. Because of the significant outdoor temperature fluctuation caused by solar radiation,the unsteady heat transfer of the enclosure structure is more suitable,which is closer to the result of dynamic energy consumption simulation.

参考文献/References:

[1]YANG L,LIU J P. Building energy simulation using multi-years and typical meteorological years in different climates[J]. Energy Conservation and Management,2008,49:113-24.
[2]HUO H,JING C,LI K,et al. Synergic relationships between thermophysical properties of wall materials in energy-saving building design[J]. International Journal of Heat and Mass Transfer,2015,90:246-253.
[3]罗凌峰,聂忆华,范鑫淼. 居住建筑节能设计标准及热工参数对比分析[J]. 山西建筑,2019,45(7):193-195.
LUO Lingfeng,NIE Yihua,FAN Xinmiao. Comparative analysis of energy saving design standards and thermal parameters of residential buildings[J]. Shanxi Architecture,2019,45(7):193-195.
[4]潘明众,刘艳峰,周勇. 集热蓄热墙式被动构件向房间传热量的简化计算方法[J]. 西安建筑科技大学学报(自然科学版),2020,52(4):594-601.
PAN Mingzhong,LIU Yanfeng,ZHOU Yong. Simplified calculation method of heat transfer to room by passive components of heat storage wall[J]. J. of Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(4):594-601.
[5]PIRASACI T. Investigation of phase state and heat storage form of the phase change material(PCM)layer integrated into the exterior walls of the residential-apartment during heating season[J]. Energy,2020,207:118176.
[6]BRANDI S,PISCITELLI M S,MARTELLACCI M,et al. Deep reinforcement learning to optimise indoor temperature control and heating energy consumption in buildings[J]. Energy and Buildings,2020,224:110225.
[7]WONJUN CHOI R O,MASANORI SHUKUYA Unsteady-state exergetic performance comparison of externally and internally insulated building envelopes[J]. International Journal of Heat and Mass Transfer,2020,163(9):120414.
[8]HAIE HUO J S,HAIBO HUO. Contributions of Energy-saving Technologies to Building Energy Saving in Different Climatic Regions of China[J]. Applied Thermal Engineering,2017,124:1159-1168.
[9]ENSHEN L,ZIXUAN Z,XIAOFEI M. Are the energy conservation rates(RVRs)approximate in different cities for the same building with the same outer-wall thermal insulation measures?[J]. Building and Environment,2005,40(4):537-44.
[10]王靖文,王烨,孙鹏宝. 基于谐波法的建筑围护结构非稳态传热分析[J]. 兰州交通大学学报,2015,34(3):153-8.
WANG Jingwen,WANG Ye,SUN Pengbao. Unsteady heat transfer analysis of building envelope based on harmonic method[J]. Journal of Lanzhou Jiaotong University,2015,34(3):153-158.
[11]刘大龙,张习龙,杨柳. 康巴藏区传统民居冬季热环境[J]. 西安建筑科技大学学报(自然科学版),2016,48(2):254-7.
LIU Dalong,ZHANG Xilong,YANG Liu. Winter thermal environment of traditional dwellings in Kangba Tibetan area[J]. Journal of Xi’an University of Architectural Science and Technology(Natural Science Edition),2016.48(2):254-257.
[12]刘大龙,刘加平,张习龙. 青藏高原气候条件下的建筑能耗分析[J]. 太阳能学报,2016,37(8):2167-72.
LIU Dalong,LIU Jiaping,ZHANG Xilong. Analysis of building energy consumption under the climatic condition of Qinghai-Xizang Plateau[J]. Journal of Solar Energy,2016,37(8):2167-2172.
[13]张率,刘衍,侯立强. 北方采暖地区居住建筑节能计算方法对比[J]. 哈尔滨工业大学学报,2019,51(10):178-85.
ZHANG Shuai,LIU Yan,HOU Liqiang. Comparison of energy saving calculation methods of residential buildings in northern heating areas[J]. Journal of Harbin Institute of Technology,2019,51(10):178-185.
[14]住房和城乡建设部. 民用建筑热工设计规范:GB 50176-2016[M]. 北京:中国建筑工业出版社. 2016.
MOHURD. Code for thermal design of civil buildings:GB 50176-2016[S]. Beijing:China Construction Industry Press,2016.
[15]刘加平. 建筑物理[M]. 4th ed.北京:中国建筑工业出版社. 2000.
LIU Jiaping. Architectural Physics[M]. 4th ed. Beijing:China Construction Industry Publishing House,2000.
[16]陈友明,王盛卫. 建筑围护结构非稳定传热分析新方法[M]. 科学出版社,2004.
CHEN Youming,WANG Shengwei. A new method for unsteady heat transfer analysis of building envelope[M]. Science Press,2004.
[17]ALEKSANDAR S A,MUJAN I,STOJANKA D. Experimental validation of a EnergyPlus model:Application of a multi-storey naturally ventilated double skin façade[J]. Energy and Buildings,2016,118:27-36.
[18]ZHU D,HONG T,DA Y,et al. A detailed loads comparison of three building energy modeling programs:EnergyPlus,DeST and DOE-2.1E[J]. Building Simulation,2013,6(3):323-35.
[19]住房和城乡建设部. 严寒和寒冷地区居住建筑节能设计标准:JGJ 26-2018[S]. 北京:中国建筑工业出版社,2018.
MOHURD. Design standard for energy efficiency of residential buildings in cold and cold areas:JGJ 26-2018[S]. Beijing:China Construction Industry Press,2018.
[20]国家市场监督管理总局.环境条件分类自然环境条件太阳辐射与温度:GB/T 4797.4-2019[S].北京:中国质检出版社,2019.
SAMR.Environmental conditions classify natural environmental conditions solar radiation and temperature:GB/T4797.4-2019[S]. Beijing:China quality Inspection Press,2019.
(编辑 桂智刚)

备注/Memo

备注/Memo:
收稿日期:2020-12-10 修改稿日期:2021-07-05
基金项目:国家自然科学基金(51878536); 陕西省自然科学基础研究计划一般项目(面上)(2019JM-505); 西部绿色建筑国家重点实验室开放研究基金项目(LSKF202017)
第一作者:何泉(1976-),女,博士、副教授,主要从事建筑气候与节能方面的研究.E-mail:76634259@qq.com
通信作者:刘大龙(1976-),男,博士、副教授,主要从事建筑气候与节能方面的研究.E-mail:cof
更新日期/Last Update: 2021-08-28