[1]郑迪萌,龙天河,叶 恺,等.太阳能烟囱-地埋管耦合系统连续自然通风可靠性实验研究[J].西安建筑科技大学学报(自然科学版),2021,53(06):819-827.[doi:10.15986/j.1006-7930.2021.06.005 ]
 ZHENG Dimeng,LONG Tianhe,YE Kai,et al.Experimental research on the reliability of continuous natural ventilation of SC-EAHE coupled system[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):819-827.[doi:10.15986/j.1006-7930.2021.06.005 ]
点击复制

太阳能烟囱-地埋管耦合系统连续自然通风可靠性实验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
819-827
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Experimental research on the reliability of continuous natural ventilation of SC-EAHE coupled system
文章编号:
1006-7930(2021)06-0819-09
作者:
郑迪萌龙天河叶 恺卢 军李永财
(重庆大学 土木工程学院,重庆 400045)
Author(s):
ZHENG Dimeng LONG Tianhe YE Kai LU Jun LI Yongcai
(School of Civil Engineering, Chongqing University, Chongqing 400045, China)
关键词:
太阳能烟囱 土壤-空气换热器 自然通风 实验测试
Keywords:
solar chimney earth-to-air heat exchanger natural ventilation experimental study
分类号:
TU-83
DOI:
10.15986/j.1006-7930.2021.06.005
文献标志码:
A
摘要:
作为利用地热能和太阳能的两种典型技术,土壤-空气换热器(EAHE)和太阳能烟囱(SC)已被深入研究和广泛应用.将两者合理结合,利用太阳能烟囱产生的热压,可以取代风机为EAHE中空气的流动提供驱动力,再将室外新鲜空气引入室内,同时降低建筑能耗.作为全被动式系统,SC-EAHE系统性能取决于当地的土壤蓄放热能力和天气状况,为了研究连续自然通风时,不同天气条件下耦合系统的可靠性,以及其对室内热环境的影响,利用全尺寸实验台,对SC-EAHE系统的相关性能参数及室内空气温度进行了为期一周的连续测试.实验结果表明:耦合系统在夏季可以维持可观的自然通风量和制冷量,在太阳辐射充足时,风量最大值为230~280 m3/h,制冷量最大值为600~800 W; 在太阳辐射强度较低时,风量和制冷量的峰值分别为170~220 m3/h和400~600 W; 地埋管出口空气温度为25.8~27 ℃,相对湿度为9.1%~84.1%,波动幅度比室外空气分别减小了93.48%和53%; 实验房间平均温度比对比房间降低2.5 ℃,室温波动降低48.2%; 系统连续运行后土壤温度升高0.8 ℃,在自然状态下需要6 d恢复到初始状态.
Abstract:
As two typical techniques using geothermal and solar energy, earth-to-air heat exchanger(EAHE)and solar chimney(SC)have been deeply studied and widely used. If these techniques are put in combination reasonably, the buoyancy produced by solar chimney can drive air flow in EAHE, which will introduce fresh air into room and reduce building energy consumption. As a totally passive system, the performance of SC-EAHE coupled system depends on the heat storage and release capacity of local soil, and weather condition. In order to test the reliability of the coupled system under different weather condition during continuous natural ventilation and the influence of the coupled system on the indoor thermal environment, this study conducts a week-long continuous test of relevant parameters and indoor temperature through a full-scale experimental platform. The experiment results show that the coupled system can keep considerable ventilation air rate and cooling capacity in summer. When the solar radiation is sufficient, the maximum of air rate and cooling capacity is respectively 230~280 m3/h and 600~800 W. When the solar radiation intensity is low, the peak values of air volume and cooling capacity are 170~220 m3/h and 400~600 W respectively. The temperature and relative humidity of outlet air of the buried pipe is respectively 25.8~27 ℃ and 9.1%~84.1%. The fluctuation range is respectively reduced by 93.48% and 53% compared with outdoor air. The average temperature of the test chamber is 2.5 ℃ lower than that of the reference chamber, and the fluctuation of the room temperature is reduced by 48.2%. The soil temperature rises by 0.8 ℃ after continuous operation of the system and it takes 6 days to recover to the initial state in the natural state.

参考文献/References:

[1] 王有为.谈“碳”—碳达峰与碳中和愿景下的中国建筑节能工作思考[J].建筑节能,2021,49(1):1-9.
WANG Youwei.China's building energy efficiency efforts to peaking carbon dioxide emission and achieving carbon neutrality[J].Journal of Building Energy Efficiency,2021,49(1):1-9.
[2]中国建筑节能协会. 中国建筑能耗研究报告(2020年)[M].北京:中国建筑工业出版社,2020.
China Building Energy Conservation Association.China building engergy research report[M].Beijing:China Architecture & Building Press,2020.
[3]LI Y, NIELSEN PV. CFD and ventilation research[J]. Indoor Air, 2011, 21(6): 442-453.
[4]史源源. 暖通空调制冷系统中的节能环保技术分析[J]. 应用能源技术, 2020(4): 34-38.
SHI Yuanyuan. Analysis of energy saving and environmental protection technology in HVAC refrigeration system[J]. Applied Energy Technology, 2020(4): 34-38
[5]新华社,我国今年将制定2030年前碳排放达峰行动方案[EB/OL]. http: //www. gov. cn/zhengce/2021-03/06/content_5590830. htm.
Xinhua, The country will draw up an action plan for peaking carbon emissions by 2030.[EB/OL]. http: // english.www.gov.cn/news/topnews/202103/06/content_WS6042dd85c6d0719374afa2ec.html
[6]张静红, 谭洪卫, 王亮. 地道风系统的研究现状及进展[J]. 建筑热能通风空调, 2013, 32(1): 44-48,99.
ZHANG Jinghong, TAN Hongwei, WANG Liang. A review on earth to air heat exchanger(EAHE)[J]. Building Energy & Environment, 2013, 32(1): 44-48,99.
[7]PERETTI C, ZARRELLA A, DE CARLI M, et al. The design and environmental evaluation of earth-to-air heat exchangers(EAHE). A literature review[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 107-16.
[8]李安桂, 郝彩侠, 张海平. 太阳能烟囱强化自然通风实验研究[J]. 太阳能学报, 2009, 30(4): 460-464.
LI Angui, HAO Caixing, ZHANG Haiping. Experimental study on solar chimney for natural ventilation[J]. Acta Energiae Solaris Sinica, 2009, 30(4): 460-464
[9]KHANAL R, LEI C. Solar chimney-A passive strategy for natural ventilation[J]. Energy Build, 2011, 43(8): 1811-1819.
[10]ARCE J, JIMENEZ M J, GUZMAN J D, et al. Experimental study for natural ventilation on a solar chimney[J]. Renewable Energy, 2009, 34(12): 2928-2934.
[11]MAEREFAT M, HAGHIGHI A P. Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney[J]. Renewable Energy, 2010, 35(10): 2316-2324.
[12]LI H, YU Y, NIU F, et al. Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney[J]. Renewable Energy, 2014, 62: 468-477.
[13]YU Y, LI H, NIU F, et al. Investigation of a coupled geothermal cooling system with earth tube and solar chimney[J]. Applied Energy, 2014, 114: 209-217.
[14]SERAGELDIN A A, ABDEEN A, AHMED M M S, et al. Solar chimney combined with earth to-air heat exchanger for passive cooling of residential buildings in hot areas[J]. Solar Energy, 2020, 206: 145-162.
[15]SERAGELDIN A A, ABDEEN A, AHMED M M S, et al. Solar chimney combined with earth to-air heat exchanger for passive cooling of residential buildings in hot areas[J]. Solar Energy, 2020, 206: 145-162.
[16]LI Y, LONG T, BAI X, et al. An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth-air heat exchanger[J]. Renewable Energy, 2021, 175: 486-500.
[17]MANCA O, NARDINI S, ROMANO P, et al. Numerical investigation of thermal and fluid dynamic behavior of solar chimney building systems[J]. Journal of Chemical Technology and Metallurgy, 2014, 49(1): 106-116.
[18]苏醒, 刘传聚, 苏季平. 太阳能烟囱的通风效应及应用研究[J]. 能源技术, 2005,(6): 245-247.
SU Xing, LIU Chuanju, SU Jiping. Research on ventilation effect and application of solar chimney[J]. Energy technology, 2005(6): 245-247.
[19]BOJIC M, PAPADAKIS G, KYRITSIS S. Energy from a two-pipe, earth-to-air heat exchanger[J]. Energy, 1999, 24(6): 519-523.
[20]IEA, Early design guidance for low energy cooling technologies[R]. Energy Conservation in Buildings and Community System Program, Annexure 28, Low Energy Cooling, Subtask 2, Report 2.[s.i.]. International Energy Agency, 1999.
[21]GAN G. Simulation of dynamic interactions of the earth-air heat exchanger with soil and atmosphere for preheating of ventilation air[J]. Applied Energy, 2015, 158: 118-132.

相似文献/References:

[1]张明杰,郜 志.多层建筑太阳能烟囱的全年通风潜力评价[J].西安建筑科技大学学报(自然科学版),2021,53(02):283.[doi:10.15986/j.1006-7930.2021.02.018]
 ZHANG Mingjie,GAO Zhi.Evaluation of the annual ventilation potential of solar chimneys for multi-story buildings[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):283.[doi:10.15986/j.1006-7930.2021.02.018]

备注/Memo

备注/Memo:
收稿日期:2021-04-06修改稿日期:2021-11-08
基金项目:国家自然科学基金项目(52078075,51708054)
第一作者:郑迪萌(1997-),女,硕士生,主要从事建筑通风方面的研究.E-mail:1027217955@qq.com 通信作者:李永财(1982-),男,副教授,博士生导师,主要从事建筑通风、相变材料方面的研究.E-mail: yongcail85@163.com

更新日期/Last Update: 2021-12-20