[1]姜静华,高 远,张育平,等.中深层套管式地埋管换热器取热性能研究及经济性分析[J].西安建筑科技大学学报(自然科学版),2021,53(06):851-859.[doi:10.15986/j.1006-7930.2021.06.009 ]
 JIANG Jinghua,GAO Yuan,ZHANG Yuping,et al.Research on heat extraction performance of deep coaxial borehole heat exchanger and its economic analysis[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):851-859.[doi:10.15986/j.1006-7930.2021.06.009 ]
点击复制

中深层套管式地埋管换热器取热性能研究及经济性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
851-859
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Research on heat extraction performance of deep coaxial borehole heat exchanger and its economic analysis
文章编号:
1006-7930(2021)06-0851-09
作者:
姜静华1高 远1张育平2王 铭1傅永泉3蔡皖龙1刘洪涛4王沣浩1
(1.西安交通大学 人居环境与建筑工程学院,陕西 西安 710049; 2.陕西省煤田地质集团有限公司,陕西 西安 710021; 3.陕西北方人居环境科技有限公司 陕西 西安 710054; 4.陕西西咸新区沣西新城能源发展有限公司,陕西 西安 712000)
Author(s):
JIANG Jinghua1 GAO Yuan1 ZHANG Yuping2 WANG Ming1 FU Yongquan3 CAI Wanlong1 LIU Hongtao4 WANG Fenghao1
(1.School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2.Shaanxi Coal Geology Group Co., Ltd., Xi'an 710021, China; 3.Shaanxi North Human Settlement Environment Technology Co., Ltd., Xi'an 710054, China; 4.Shaanxi Xixian Fengxi Energy Development Co., Ltd., Xi'an 712000, China)
关键词:
中深层套管式地埋管换热器 数值模拟 换热性能 正交试验 平均能源成本法
Keywords:
deep borehole heat exchanger numerical simulation heat transfer performance orthogonal test average energy cost method
分类号:
TU832; TK529
DOI:
10.15986/j.1006-7930.2021.06.009
文献标志码:
A
摘要:
使用FLUENT软件建立了中深层套管式地埋管换热器三维数值传热模型,基于正交试验极差法,分析了入口温度、埋深、内管径、岩土热导率、地温梯度对中深层套管式地埋管换热器换热性能的影响.结果表明:这五项因素对中深层套管式地埋管换热器换热性能的影响显著性依次为:埋深、地温梯度、入口温度、岩土热导率、内管径; 其次基于平均能源成本法建立中深层套管式地埋管换热器经济性评价方法.研究结果表明:中深层套管式地埋管换热器的平均能源成本随埋深增加呈先下降后上升趋势,在选定参数条件下,2 500 m埋深的中深层套管式地埋管换热器平均能源成本最低、经济性最优,所使用方法及所得结论可为中深层套管式地埋管优化研究与工程应用提供参考.
Abstract:
The paper, FLUENT software is used to establish a three-dimensional numerical heat transfer model of deep coaxial borehole heat exchanger, and based on the orthogonal test range method, the effects of inlet temperature, buried depth, inner diameter, geotechnical thermal conductivity and geothermal gradient on the heat transfer performance of deep borehole heat exchanger are analyzed. The results show that the significant effects of these five factors on the heat transfer performance of deep coaxial borehole heat exchanger are as follows: buried depth, geothermal gradient, inlet temperature, geotechnical thermal conductivity and inner diameter. Then, based on the average energy cost method, the economic evaluation method for deep coaxial borehole heat exchanger is established. It is found that the average energy cost decreases first and then increases with the increment of buried depth. With the given parameters in this paper, the deep coaxial borehole heat exchanger with 2 500 m buried depth has the lowest average energy cost and the best economy. The methods and conclusions can provide reference for the optimization research and engineering application of the deep coaxial borehole heat exchanger.

参考文献/References:

[1] DENG Jiewen, HE Shi, WEI Qingpeng, et al. Field test and optimization of heat pumps and water distribution systems in medium-depth geothermal heat pump systems[J]. Energy and Buildings, 2020, 209: 109724.
[2]孔彦龙,陈超凡,邵亥冰,等.深井换热技术原理及其换热量评估[J].地球物理学报,2017,60(12):4741-4752.
KONG Yanlong, CHEN Chaofan, SHAO Haibing, et al. Principle and capacity quantification of deep borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60(12): 4741-4752.
[3]王硕,殷元生,黄可钦,等.同轴套管深埋管换热器延米换热量变化规律的研究[J].工业加热,2019,48(2):5-9.
WANG Shuo, YIN Yuansheng, HUANG Keqin, et al. Research on the change of heat transfer rate per meter in deep coaxial borehole heat exchanger[J]. Industrial Heating, 2019, 48(2): 5-9.
[4]LIANG Fang, DIAO Nairen, SHAO Zhukun, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings,2018, 167: 79-88.
[5]卜宪标,冉运敏,王令宝,等.单井地热供暖关键因素分析[J].浙江大学学报(工学版),2019, 5:1-8.
BU Xianbiao, RAN Yunmin, WANG Lingbao, et al. Analysis of key factors affecting single well geothermal heating[J]. Journal of Zhejiang University(Engineering Science), 2019,5:1-8.
[6]李鹏程.中深层地热源热泵套管式地埋管换热器传热特性研究[D].哈尔滨:哈尔滨工业大学,2018.
LI Pengcheng. Research of heat transfer characteristics of casing ground heat exchanger with medium and deep ground source heat pump[D]. Harbin: Harbin Institute of Technology, 2018.
[7]SHABNAM G, EMAD M, SEYED J H A B, et al. Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger[J]. Energy, 2018, 153: 554-567.
[8]LUO YQ, GUO HS, MEGGERS F, et al. Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis[J]. Energy, 2019, 185: 1298-1313.
[9]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
TAO Wenquan. Recent advances in computational heat transfer[M]. Beijing: Science Press, 2000.
[10]郝拉娣,于化东.正交试验设计表的使用分析[J].编辑学报,2005(5):334-335.
HAO Ladi, YU Huadong. On use of orthogonal experimental design[J]. Acta Editologica, 2005(5): 334-335.
[11]ELGENDY E, SCHMIDT J. Optimum utilization of recovered heat of a gas engineheat pump used for water heating at low air temperature[J]. Energy and Buildings,2014, 80: 375-383.
[12]DEMIR H, KOYUN A, TEMIR G. Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification[J]. Applied Thermal Engineering, 2009, 29(2/3): 224-233.
[13]蔡增基,龙天渝.流体力学泵与风机[M].第五版.北京:中国建筑工业出版社,2009.
CAI Zengji, LONG Tianyu. Hydrodynamic pumps and fans[M]. 5th ed.Beijing: China Building Industry Press,2009.
[14]张海琳,余跃进,胡纯良.地埋管地源热泵地埋管管径的选取[J].暖通空调,2012,42(12):114-117.
ZHANG Hailin, YU Yuejin, HU Chunliang. Selection of pipe diameter for ground source heat pump system[J]. Heating Ventilating & Air Conditioning, 2012, 42(12): 114-117.

相似文献/References:

[1]张繁荣,徐强,蒋攀,等.采用新型双T型钢 - 穿芯螺栓连接的方钢管混凝土柱 - 钢梁节点滞回性能研究[J].西安建筑科技大学学报(自然科学版),2020,52(01):54.[doi:10.15986j.1006-7930.2020.01.008]
 ZHANG Fanrong,XU Qiang,JIANG Pan,et al.Study on hysteretic behavior of new steel beam to concrete-filled square steel tubular column joint with double T-stub-bidirectional bolts[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):54.[doi:10.15986j.1006-7930.2020.01.008]
[2]李 浩,刘 毅,彭 振,等.边坡偏压对于邻近地铁车站基坑稳定性影响分析[J].西安建筑科技大学学报(自然科学版),2020,52(03):359.[doi:10.15986/j.1006-7930.2020.03.008]
 LI Hao,LIU Yi,PENG Zhen,et al.Analysis on the stability of metro foundation pit under bias pressure from the adjacent slope[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):359.[doi:10.15986/j.1006-7930.2020.03.008]
[3]卫守峰.黄土地区地铁竖井转横通暗挖施工稳定性分析[J].西安建筑科技大学学报(自然科学版),2020,52(03):366.[doi:10.15986/j.1006-7930.2020.03.009]
 WEI Shoufeng.Optimization analysis of tunnel construction methods through cross aisle from subway shaft based on numerical test analysis in loess stratum[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):366.[doi:10.15986/j.1006-7930.2020.03.009]
[4]牛泽林,刘朝鹏,郑 蕾,等.大断面公路板岩隧道开挖与支护数值模拟研究[J].西安建筑科技大学学报(自然科学版),2020,52(03):376.[doi:10.15986/j.1006-7930.2020.03.010]
 NIU ZeLin,LIU Chaopeng,ZHENG Lei,et al.Numerical simulation study on excavation and support of slab tunnel in large section highway[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):376.[doi:10.15986/j.1006-7930.2020.03.010]
[5]王 璐,史庆轩,戎 翀.基于多尺度模型的斜交相贯节点基本力学性能分析[J].西安建筑科技大学学报(自然科学版),2020,52(03):409.[doi:10.15986/j.1006-7930.2020.03.015]
 WANG Lu,SHI Qingxuan,RONG Chong.Analysis of basic mechanical properties of intersecting connection based on multi-scale model[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):409.[doi:10.15986/j.1006-7930.2020.03.015]
[6]谢伟东.降雨入渗对隧道下穿路基段边坡变形稳定性的影响分析[J].西安建筑科技大学学报(自然科学版),2020,52(04):470.[doi:10.15986-j.1006-7930.2020.04.002]
 XIE Weidong.Impact analysis of rainfall infiltration on the deformation mechanism and stability of roadbed slope[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):470.[doi:10.15986-j.1006-7930.2020.04.002]
[7]郭 琦,吴 梦,孙虎平,等.考虑初始随机缺陷的橡胶混凝土破坏形态研究[J].西安建筑科技大学学报(自然科学版),2020,52(06):806.[doi:10.15986/j.1006-7930.2020.06.005 ]
 GUO Qi,WU Meng,SUN Huping,et al.Study of rupture form for rubber concrete considering initial random defect[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):806.[doi:10.15986/j.1006-7930.2020.06.005 ]
[8]常志英,黄廷林.基于VOF数值模拟的扬水曝气器提水性能研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):117.[doi:10.15986/j.1006-7930.2021.01.016]
 CHANG Zhiying,HUANG Tinglin.Research on the water lifting performance of waterlifting aerator based on VOF[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):117.[doi:10.15986/j.1006-7930.2021.01.016]
[9]刘彦涛.下穿寺庙隧道爆破振动影响的数值模拟与分析[J].西安建筑科技大学学报(自然科学版),2021,53(02):160.[doi:10.15986/j.1006-7930.2021.02.002]
 LIU Yantao.Numerical simulation and analysis of the influence of blasting vibration in the tunnel crossing under a temple[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):160.[doi:10.15986/j.1006-7930.2021.02.002]
[10]陈 洁,罗智星,杨 柳.干热干冷地区室外综合温度计算模型适用性分析[J].西安建筑科技大学学报(自然科学版),2021,53(03):439.[doi:10.15986/j.1006-7930.2021.03.016]
 CHEN Jie,LUO Zhixing,YANG Liu.Research on the applicability of sol-air temperature calculation model in dry-hot and dry-cold areas[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):439.[doi:10.15986/j.1006-7930.2021.03.016]

备注/Memo

备注/Memo:
收稿日期:2021-07-26修改稿日期:2021-11-16
基金项目:国土资源部煤炭资源勘查与综合利用重点实验室基金资助课题(KF2020-7); 陕西省科技计划基金资助项目(2020ZDLSF06-08)
第一作者:姜静华(1998-),女,硕士生,主要从事中深层地埋管换热特性研究.E-mail:jiang1998@stu.xjtu.edu.cn 通信作者:王沣浩(1972-),男,博士、教授、博士生导师,主要从事建筑节能与可再生能源利用技术方面研究.E-mail: fhwang@mail.xjtu.edu.cn

更新日期/Last Update: 2021-12-20