[1]何桂香,谷雅秀,段佳慧.空气源热泵超疏水抑霜的机理分析及性能研究[J].西安建筑科技大学学报(自然科学版),2021,53(06):860-866.[doi:10.15986/j.1006-7930.2021.06.010 ]
 HE Guixiang,GU Yaxiu,DUAN Jiahui.Mechanism analysis and performance research on superhydrophobic frost suppression of air source heat pump[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):860-866.[doi:10.15986/j.1006-7930.2021.06.010 ]
点击复制

空气源热泵超疏水抑霜的机理分析及性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
860-866
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Mechanism analysis and performance research on superhydrophobic frost suppression of air source heat pump
文章编号:
1006-7930(2021)06-0860-07
作者:
何桂香1谷雅秀1段佳慧2
(1.长安大学 建筑工程学院,陕西 西安 710061; 2.广州市交通设计研究院有限公司,广东 广州510000)
Author(s):
HE Guixiang1 GU Yaxiu1 DUAN Jiahui2
(1.School of Civil Engineering, Chang'an University, Xi'an 710061, China; 2.Guangzhou Traffic Design and Research Institute Co., Ltd., Guangzhou 510000, China)
关键词:
空气源热泵 超疏水 抑霜 融霜
Keywords:
air source heat pump superhydrophobic frost suppression defrosting
分类号:
TU83
DOI:
10.15986/j.1006-7930.2021.06.010
文献标志码:
A
摘要:
为解决空气源热泵室外换热器在低温潮湿的工况下运行时的结霜问题,从结霜影响因素及霜层生长条件出发,改善了一种抑霜表面改性方法,制备出接触角为158.3°的超疏水铝基翅片; 基于超疏水抑霜机理分析,并通过所建立的模拟低温、高湿环境的强制对流可视化实验平台,对超疏水铝基竖直翅片的抑霜/融霜效果进行理论及实验研究.结果表明,超疏水表面液滴成核位垒大、冰桥传播慢、液滴与冷表面接触面积小、液滴频繁发生合并-弹跳-滚动-滑落现象; 霜层初始生长阶段,超疏水铝基表面较常规铝基表面结霜时间延迟165 s、霜层覆盖率增速小; 强制对流下的结霜过程中,超疏水铝基翅片结霜量为常规铝基翅片的69.8%、生长速率为常规铝基翅片的65.2%; 融霜过程中,超疏水铝基翅片融霜时间为常规铝基翅片的64%、残留化霜水比例减少47.9%.超疏水表面表现出良好的抑制结霜、快速融霜的特性,初步揭示了超疏水技术应用于空气源热泵室外机换热器表面进行有效抑霜的可行性及其实际应用价值.
Abstract:
Based on the influencing factors and conditions of frost layer growth to suppress frost, this paper improves a surface modification method to solve the problem that the outdoor heat exchanger of air source heat pump will frost while operating under low temperature and high humidity. By this means, superhydrophobic aluminum fins with contact angle of 158.3° are prepared. To experimentally study the frost suppression / thawing effect of superhydrophobic aluminum fins, the frost suppression mechanism of superhydrophobic surface is analyzed, and a forced convection visualization experimental platform which simulates low temperature and high humidity environment is established. The results show that the superhydrophobic surface has large nucleation barrier, slow ice bridge propagation, less contact area between droplets and cold surface, and frequent merging-bouncing-rolling-sliding of droplets. In the initial growth stage of frost layer, the frosting time of superhydrophobic aluminum fin is 165 s later than that of conventional aluminum fin, and the growth rate of frost layer coverage is small. During the frosting process under forced convection, the frosting amount of superhydrophobic aluminum fin is 69.8% of that of conventional aluminum fin, and the growth rate is 65.2% of that of conventional aluminum fin. During the defrosting process, the defrosting time of superhydrophobic aluminum fin is 64% of that of conventional aluminum fin, and the proportion of residual defrosting water is reduced by 47.9%. The superhydrophobic surface shows good characteristics of inhibiting frosting and rapid defrosting. The results preliminarily reveal the feasibility and practical application value of superhydrophobic technology, which is applied to the surface of outdoor unit heat exchanger of air source heat pump.

参考文献/References:

[1] SONG Mengjie, et al. Techno-economic analysis on frosting and defrosting operations of an air source heat pump unit applied in a typical cold city[J]. Energy & Buildings, 2018, 162: 65-76.
[2]王伟, 张富荣, 郭庆慈, 等. 空气源热泵在我国应用结霜区域研究[J]. 湖南大学学报(自然科学版), 2009, 36(S2): 9-13
WANG Wei, ZHANG Furong, GUO Qingci, et al. Investigation of frost status for air source heat pump in different regions of China[J]. Journal of Hunan University(Natural Sciences), 2009, 36(S2): 9-13.
[3]刘康, 吕静. 空气源热泵除霜研究[J]. 制冷与空调, 2011, 25(4): 421-424.
LIU Kang, LÜ Jing. Study of air-source heat Pump defrosting[J]. Refrigeration and Air-conditioning, 2011, 25(4): 421-424.
[4]张杰, 兰菁, 杜瑞环, 等. 几种空气源热泵除霜方式的性能比较[J]. 制冷学报, 2012, 33(2): 47-49.
ZHANG Jie, LAN Jing, DU Ruihuan, et al. The performance comparison of several defrosting modes for air-source heat pump[J]. Journal of Refrigeration, 2012, 33(2): 47-49.
[5]NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79: 667-677.
[6]王贤林, 蒋绍坚, 艾元方, 等. 疏水表面用于延缓热泵结霜及加快除霜的探讨[J]. 节能技术, 2004, 14(5): 37-38.
WANG Xianlin, JIANG Shaojian, AI Yuanfang, et al. Discuss on hydrophobic surface for preventing frosting and speeding defrosting of heat pump[J]. Energy Conservation Technology, 2004, 14(5): 37-38.
[7]HAYASHI Y, AOKI A, ADACHI S, et al. Study of frost properties correlating with frost formation types[J]. Journal of Heat Transfer. 1977, 99(5): 23-28.
[8]汪峰, 梁彩华, 张小松. 超疏水翅片表面的抑霜机理和融霜特性[J]. 工程热物理学报, 2016, 37(5): 1066-1070.
WANG Feng, LIANG Caihua, ZHANG Xiaosong, Anti-frosting mechanism and frost melting on superhydrophobic fin surface[J]. Journal of Engineering Thermophysics, 2016, 37(5): 1066-1070.
[9]梁彩华, 汪峰, 吕艳, 等. 翅片表面特性对结霜过程影响的实验研究[J]. 东南大学学报(自然科学版), 2014, 44(4): 745-750.
LIANG Caihua, WANG Feng, LÜ Yan, et al. Experimental study on effect of surface characteristic of fin on frost formation[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(4): 745-750.
[10]WU X M, DAI W T, SHAN X F, et al. Visual and theoretical analyses of the early stage of frost formation on cold surfaces[J]. Journal of Enhanced Heat Transfer, 2007, 14(3): 257-268.
[11]苏伟. 空气源热泵抑霜机理及无霜热泵的初步探索[D]. 南京:东南大学, 2019.
SU Wei. Study on mechanism of frost suppression on air-Source heat pump and preliminary study on frost-free heat pump[D]. Nanjing:Southeast University, 2019.
[12]罗倩妮, 梁彩华. 超疏水表面液滴冻结初期冻结行为传递特性[J]. 中南大学学报(自然科学版), 2019, 50(7): 1712-1718.
LUO Qianni, LIANG Caihua. Characteristics of frost spreading during initial stage of condensed droplet freezing on superhydrophobic surface[J]. Journal of Central South University(Science and Technology), 2019, 50(7): 1712-1718.
[13]HUANG L Y, LIU Z L, LIU Y M, et al. Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil[J]. International Journal of Thermal Sciences, 2011, 50(4): 432-439.
[14]陈小娇, 武卫东, 汪德龙. 超疏水表面抑制结霜研究进展[J]. 表面技术, 2015, 44(2): 87-92.
CHEN Xiaojiao, WU Weidong, WANG Delong. Research progress in anti-frosting performance of super-hydrophobic surfaces[J]. Surface Technology, 2015, 44(2): 87-92.
[15]WANG Z J, KWON D J, DEVRIES K L, et al. Frost formation and anti-icing performance of a hydrophobic coating on aluminum[J]. Experimental Thermal and Fluid Science, 2015, 60: 132-137.
[16]汪峰, 梁彩华, 张友法, 等. 结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响[J]. 东南大学学报(自然科学版), 2016, 46(4): 757-762.
WANG Feng, LIANG Caihua, ZHNAG Youfa, et al. Jumping of condensation droplets on superhydrophobic surfaces at early frosting stage and its effects on frost formation[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(4): 757-762.
[17]ZHAO Y G, YANG C. Frost spreading on microscale wettability/morphology patterned surfaces[J]. Applied Thermal Engineering, 2017, 121: 136-145.
[18]NIEDERER D H. Frost and defrosting effects on coil heat transfer[J]. ASHARE Transaction, 1976, 82(1): 467-473.
[19]刘天庆, 孙玮, 孙相彧, 等. 超疏水表面上冷凝液滴发生弹跳的机制与条件分析[J]. 物理化学学报, 2012, 28(5): 1206-1212.
LIU Tianqing, SUN Wei, SUN Xiangyu, Mechanism and condition analysis of condensed drop jumping on super-hydrophobic surfaces[J]. Acta Physico-Chimica Sinica, 2012, 28(5): 1206-1212.
[20]谷雅秀, 王兴龙, 王俊炜, 等. 一种铝基抑霜性实验系统:CN209069615U[P]. 2019-07-05.
GU Yaxiu, WANG Xinglong, WANG Junwei, et al. An aluminum based frost Suppression Experimental System:CN209069615U[P]. 2019-07-05.
[21]刘韬, 底月兰, 王海斗,等. 化学刻蚀法制备金属超疏水表面的方法及机理研究[J]. 表面技术, 2019, 48(11): 226-235.
LIU Tao, DI Yuelan, WANG Haidou, et al. Method and mechanism of preparing metal superhydrophobic surface by chemical etching[J]. Surface Technology, 2019, 48(11): 226-235.

相似文献/References:

[1]赵娟,周波涛,白艺飞,等.高原寒冷地区既有建筑节能改造适宜性及经济性分析[J].西安建筑科技大学学报(自然科学版),2023,55(05):774.[doi:10.15986/j.1006-7930.2023.05.017]
 ZHAO Juan,ZHOU Botao,BAI Yifei,et al.Suitability and economic analysis of existing building energy saving reconstruction in cold plateau region[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(06):774.[doi:10.15986/j.1006-7930.2023.05.017]

备注/Memo

备注/Memo:
收稿日期:2021-05-11修改稿日期:2021-11-10
基金项目:国家自然科学基金项目(51106014); 陕西省自然科学基础研究计划面上基金项目(2018JM5084); 陕西省建设厅建设科技计划管理基金项目(2015-K14); 中央高校基本科研业务费(自然科学类)高新技术研究培育项目(300102289203)
第一作者:何桂香(1998-),女,硕士生.主要从事空气热泵抑霜除霜研究.E-mail: 2020128091@chd.edu.cn 通信作者:谷雅秀(1980-),女,博士,副教授,主要从事制冷与暖通空调系统节能与优化研究.E-mail:guyaxiu@chd.edu.cn

更新日期/Last Update: 2021-12-20