[1]贾纪康,司鹏飞,戎向阳,等.热工参数可变的被动太阳能窗研究[J].西安建筑科技大学学报(自然科学版),2021,53(06):904-909920.[doi:10.15986/j.1006-7930.2021.06.015 ]
 JIA Jikang,SI Pengfei,RONG Xiangyang,et al.Development of passive solar window with variable thermal parameters[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):904-909920.[doi:10.15986/j.1006-7930.2021.06.015 ]
点击复制

热工参数可变的被动太阳能窗研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
904-909920
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Development of passive solar window with variable thermal parameters
文章编号:
1006-7930(2021)06-0904-06
作者:
贾纪康司鹏飞戎向阳石利军杨正武
(中国建筑西南设计研究院有限公司,四川 成都 610041)
Author(s):
JIA Jikang SI Pengfei RONG Xiangyang SHI Lijun YANG Zhengwu
(China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu 610041, China)
关键词:
被动太阳能 建筑供暖 太阳能窗 太阳能得热系数
Keywords:
passive solar energy building heating solar window solar heat gain coefficient
分类号:
TU111.19; TK512
DOI:
10.15986/j.1006-7930.2021.06.015
文献标志码:
A
摘要:
针对被动太阳能窗白天太阳得热要求的太阳总透射比大和夜间防止失热希望的传热系数小的矛盾问题,开发了一种热工参数可变的被动太阳能窗,实现了窗户传热系数U和太阳得热系数SHGC阶跃可变.采用WINDOW和THERM软件对窗户的热工性能进行了模拟与优化,给出了不同玻璃组合形式、窗框型材及窗框比下的热工性能参数,并通过第三方检测对模拟结果进行了验证.结果表明:模拟相对误差约为4%,可满足工程应用精度要求; 对于热工参数可变的被动太阳能窗(G3玻璃系统),白天内窗扇开启时,SHGC升高至0.69,进入室内的太阳辐射得热增加82%,可有效提高太阳辐射得热量; 夜晚内窗扇关闭时,窗户U值降低至1.66 W/(m2·K),可有效减少窗户夜晚的散热量.
Abstract:
Aiming at the contradiction between the high total solar transmittance required by the passive solar window for solar heat gain during the day and the small heat transfer coefficient required to prevent heat loss at night, a passive solar window with variable thermal parameters was developed to achieve a step change in the heat transfer coefficient U and the solar heat gain coefficient SHGC of the window. WINDOW and THERM software were used to simulate and optimize the thermal performance of the window, and the thermal performance parameters under different glass combination forms, window frame profiles and window frame ratios were given. The simulation results were verified by third-party testing. The results show that the relative error of simulation is about 4%, which can meet the accuracy requirements of engineering applications. For passive solar window with variable thermal parameters(G3 glass system), when the window sashes are opened during the day, the SHGC increases to 0.69, and the solar radiation entering the room increases by 82%, which means that the solar heat gain is effectively increased. When the window sashes are closed at night, the U is reduced to 1.66 W/(m2·K), which can effectively reduce the heat dissipation of the window at night.

参考文献/References:

[1] 中国建筑西南设计研究院有限公司. 四川省被动式太阳能建筑设计规范:DBJ51/T019-2013[S]. 成都:西南交通大学出版社, 2014: 22-23.
China Southwest Architectural Design and Research Institute Co. Ltd.. Technical code for passive solar buildings design in sichuan province:DBJ51/T 019-2013[S]. Chengdu: Southwest Jiaotong University Press., 2014: 22-23.
[2]江亿, 冯雅, 戎向阳, 等. 对拉萨城市供暖模式的探讨[J]. 暖通空调, 2013, 43(6):1-7.
JIANG yi, FENG Ya, RONG Xiangyang, et al. Discussion on urban heating modes for Lhasa[J]. Heating, Ventilating & Air Conditioning, 2013, 43(6):1-7.
[3]刘艳峰, 王莹莹, 王登甲, 等. 西北村镇建筑热环境提升与能源高效利用关键技术及应用[J]. 暖通空调, 2021, 51(8):1-6,43.
LIU Yanfeng, WANG Yingying, WANG Dengjia, et al. Key technology and application of building thermal environment improvement and energy efficient utilization in northwest villages and towns[J]. Heating, Ventilating&Air Conditioning, 2021, 51(8):1-6,43.
[4]杨婧, 刘艳峰, 陈耀文, 等. 用于被动太阳能采暖适用技术选择的气候分区研究[J]. 太阳能学报, 2021, 42(6):234-242.
YANG Jing, LIU Yanfeng, CHEN Yaowen, et al. Research of climate regions division for applicable passive solar heating technology selection[J]. Acta Energiae Solaris Sinica, 2021, 42(6):234-242.
[5]王登甲, 刘艳峰, 刘加平. 青藏高原被动太阳能建筑供暖性能实验研究[J]. 四川建筑科学研究, 2015, 41(2):269-274.
WANG Dengjia, LIU Yanfeng, LIU Jiaping. Experiments analysis on the heating performance of the passive solar house in the Qinghai - Tibet plateau[J]. Sichuan Building Science, 2015, 41(2):269-274.
[6]李元哲, 狄洪发, 方贤德. 被动式太阳房的原理及其设计[M]. 北京:能源出版社, 1989.
LI Yuanzhe, DI Hongfa, FANG Xiande. Principle and design of passive solar house[M]. Beijing:Energy Press,1989.
[7]LEVISON R, AKBARI H, BERDAHL P. Measuring solar reflectance—Part I: Defining a metric that accurately predicts solar heat gain[J]. Solar Energy, 2010, 84(9):1717-1744.
[8]OLIVETI G, ARCURI N, BRUNO R, et al. An accurate calculation model of solar heat gain through glazed surfaces[J]. Energy & Buildings, 2011, 43(2/3):269-274.
[9]ANIEKAN Offiong, UKPOHO A U. An analysis of solar gain through externally shaded window of buildings[J]. Renewable Energy, 2004, 29:131-150.
[10]刘艳峰, 刘加平, 杨柳, 等. 拉萨地区被动太阳能传统民居测试研究[J]. 太阳能学报, 2008,29(4):13-16.
LIU Yanfeng, LIU Jiaping, YANG Liu, et al. Measureing study of passive solar house for traditional dewlling building in Lhasa area[J]. Acta Energiae Solaris Sinica, 2008,29(4):13-16.
[11]祁清华, 冯雅, 谷晋川, 等.直接受益式太阳能建筑关键热工参数动态分析研究[J].可再生能源, 2010, 28(3): 6-10.
QI Qinghua, FENG Ya, GU Jinchuan, et al. Dynamic analysis on the thermal parameters of direct gain solar building[J]. Renewable Energy Resources, 2010, 28(3): 6-10.
[12] 王登甲, 杨黎黎, 马超. 太阳能直接受益外窗热平衡关系优化分析[J]. 节能技术, 2016, 34(1): 21-24.
WANG Dengjia, YANG Lili, MA Chao. Optimization analysis on the heat balance relationship of direct - gain window in solar houses[J]. Energy Conservation Technology, 2016, 34(1): 21-24.
[13]余庄, 李晶, 张辉. 气候适应性窗对室内环境的影响研究[J]. 建筑科学, 2010(8):21-25,42.
YU Zhuang, LI Jing, ZHANG Hui. Study on influences of climatic adaptive window on indoor thermal environment[J]. Building Science, 2010(8):21-25,42.
[14]戎向阳, 钱方, 司鹏飞, 等. 一种组合式被动太阳能围护结构:CN209482528U[P]. 2019-01-11.
RONG Xiangyang, QIAN Fang, SI Pengfei, et al. The utility model relates to a combined passive solar energy envelope: CN209482528U[P]. 2019-01-11.
[15]石利军, 戎向阳, 司鹏飞, 等. 高原被动式太阳能建筑透明围护结构的阶跃传热特性[J]. 暖通空调, 2019,49(2):63,107-110.
SHI Lijun, RONG Xiangyang, SI Pengfei, et al. Leap heat-transfer characteristics for transparent envelope of passive solar buildings in alpine region[J]. Heating, Ventilating&Air Conditioning, 2019, 49(2):63,107-110.
[16]TAN Y, PENG J, CURCIJA D C, et al. Parametric study of the impact of window attachments on air conditioning energy consumption[J]. Solar Energy, 2020, 202:136-143.
[17]广东省建筑科学研究院.建筑门窗玻璃幕墙热工计算规程:JGJT151-2008[S].北京:中国建筑工业出版社, 2008:58-59.
Guangdong Provincial Academy of Building Research Group Co. Ltd. Calculation specification for thermal performance of windows, doors and glass curtain-walls:JGJ151-2008[S]. Beijing:China Architecture & Building Press, 2008:58-59.
[18]建筑外窗传热系数检测报告[R]. 成都:四川省建筑工程质量检测中心有限公司, 2020:1-2.
Test report on heat transfer coefficient of building window[R]. Chengdu:Sichuan Construction Engineering Quality Checking&Measuring Centre, 2020:1-2.

相似文献/References:

[1]刘艳峰,胡筱雪,周勇,等.拉萨新民居建筑冬季室内热环境影响因素分析[J].西安建筑科技大学学报(自然科学版),2019,51(01):109.[doi:10.15986/j.1006-7930.2019.01.017]
 LIU YanfengHU XiaoxueZHOU YongWANG DengjiaHU Wei.Analysis on influence factors of indoor thermal environment of new residential buildings in winter in Lhasa[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(06):109.[doi:10.15986/j.1006-7930.2019.01.017]

备注/Memo

备注/Memo:
收稿日期:2021-04-07修改稿日期:2021-11-10
基金项目:国家自然科学基金项目(51708532)
第一作者:贾纪康(1994-),男,工学硕士,工程师,主要从事建筑节能与可再生能源应用. E-mail: 18890356952@163.com 通信作者:司鹏飞(1984-),男,工学博士/博士后,高级工程师,主要从事建筑节能与可再生能源应用. E-mail: 175987342@qq.com

更新日期/Last Update: 2021-12-20