[1]冷康鑫,于靖华,杨清晨,等.双层相变通风屋面的影响因素研究[J].西安建筑科技大学学报(自然科学版),2021,53(06):910-920.[doi:10.15986/j.1006-7930.2021.06.016 ]
 LENG Kangxin,YU Jinghua,YANG Qingchen,et al.Study on the influencing factors of double-layer phase change ventilation roof[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):910-920.[doi:10.15986/j.1006-7930.2021.06.016 ]
点击复制

双层相变通风屋面的影响因素研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
910-920
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Study on the influencing factors of double-layer phase change ventilation roof
文章编号:
1006-7930(2021)06-0910-11
作者:
冷康鑫于靖华杨清晨赵金罡
(华中科技大学 环境科学与工程学院,湖北 武汉 430000)
Author(s):
LENG Kangxin YU Jinghua YANG Qingchen ZHAO Jingang
(School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430000, China)
关键词:
相变通风屋面 相变材料 夜间通风 动态热网模型 TRNSYS模拟
Keywords:
phase change ventilation roof phase change material night ventilation dynamic heating network model TRNSYS simulation
分类号:
TU831
DOI:
10.15986/j.1006-7930.2021.06.016
文献标志码:
A
摘要:
在负荷模拟软件TRNSYS中建立了带有双层相变通风屋面的建筑模型,在以武汉市为代表的夏热冬冷地区气候条件下,分别研究了相变层相变温度范围、相变层厚度和通风速度对屋面热工性能的影响,并进行优化设计.从空调累积负荷、相变材料利用率和经济性因素考虑高温相变层的最佳相变温度范围为26~28 ℃,最佳厚度为30 mm,最佳通风速度为2~3 m/s,低温相变层的最佳相变温度范围为15~17 ℃,最佳厚度为20~30 mm.经过优化设计后,双层相变通风屋面与参照屋面相比,在供冷期的累积冷负荷可降低30.18%,在供热期的累积热负荷可降低33.92%.
Abstract:
In the load simulation software TRNSYS, a building model with a double-layer phase-change ventilated roof was established. Under the climatic conditions of hot summer and cold winter regions represented by Wuhan, the effects of phase-change temperature range, thickness of phase-change layer and ventilation speed on the thermal performance of the roof were studied, and the optimal design was carried out. Considering the cumulative load of the air conditioner, the utilization rate of phase change materials and economic factors, the optimal phase change temperature range of the high temperature phase change layer is 26~28 ℃, the optimal thickness is 30 mm, and the optimal ventilation speed is 2~3 m/s; the optimal phase change temperature range of the low-temperature phase change layer is 15~17 ℃, and the optimal thickness is 20~30 mm. After the optimization design, the cumulative cooling load of the double-layer phase change ventilation roof can be reduced by 30.18% in the cooling period and 33.92% in the heating period compared with the reference roof.

参考文献/References:

[1] 许江风. 中国能源战略发展关键问题思考[J].南方能源建设, 2019, 6(1): 22-23.
XU Jiangfeng. Discuss on key problems of energy development strategy in China[J]. Southern Energy Construction,2019,6(1):22-23.
[2]毕博. 建筑工程屋面节能技术探究[J].居舍, 2019, 36: 51.
BI Bo. Research on energy-saving technology of building engineering roof[J].Wushe,2019,36:51.
[3]朱新荣, 杨雯, 杨柳, 等. 夜间通风建筑关键设计参数优化分析[J].西安建筑科技大学(自然科学版), 2016, 48(3): 401-405.
ZHU Xinrong, YANG Wen, YANG Liu, et al. Optimization on critical design parameter of night ventilation buildings[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2016, 48(3): 401-405.
[4]朱新荣, 杨柳, 刘加平, 等. 夜间通风空调办公建筑降温参数分析[J].西安建筑科技大学(自然科学版), 2009, 41(6): 846-850.
ZHU Xinrong, YANG Liu, LIU Jiaping, et al. Parameter analysis of night ventilation in air-conditioned office building[J]. Journal of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2009, 41(6): 846-850.
[5]EVOLA G, MARLETTA L, SICURELLA F. Simulation of a ventilated cavity to enhance the effectiveness of PCM wallboards for summer thermal comfort in buildings[J]. Energy and Buildings, 2014, 70: 480-489.
[6]DIARCE G, URRESTI A, GARCÍA-ROMERO A. Ventilated active façades with PCM[J]. Applied Energy, 2013, 109: 530-537.
[7]胡志鹏, 黄真. 含有相变材料的通风墙板热工性能研究[J]. 新型建筑材料, 2019, 46(2): 88-91.
HU Zhipeng, HUANG Zhen. Study on thermal performance of ventilated wall panel containing phase change material[J]. New Building Materials, 2019, 46(2): 88-91.
[8]刘江, 杨柳, 刘衍. 西安办公建筑相变蓄热通风技术的季节适宜性研究[J].土木与环境工程学报(中英文), 2019, 41(1): 150-159.
LIU Jiang, YANG Liu, LIU Yan. Study on seasonal suitability of phase change heat storage coupled with night ventilation in an office building in Xi'an[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 150-159.
[9]谢静超, 汤逸羚, 张召锋. 通风与相变耦合条件下围护结构最佳蓄热性能[J].化工学报, 2017(7): 2684-2695.
XIE Jingchao, TANG Yiling, ZHANG Zhaofeng. Optimum heat storage performance of building envelope under coupling condition of ventilation and phase change[J]. CIESC Journal, 2017(7): 2684-2695.
[10]张磊, 杨柳, 张璞. 高校宿舍楼夜间蓄热通风性能实验研究[J].西安建筑科技大学(自然科学版), 2014, 46(5): 749-753.
ZHANG Lei, YANG Liu, ZHANG Pu. Experiment research on the regenerative night ventilation performance of university dormitory[J]. Journal of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2014, 46(5): 749-753.
[11]MOHIT Prabhakar, MOHAMMAD Saffari, ALVARO de Gracia, et al. Improving the energy efficiency of passive PCM system using controlled natural ventilation[J]. Energy and Buildings,2020,228:1-9.
[12]ABDELAZIZ Mechouet, EL MOSTAFA Oualim, TAOUFIQ Mouhib. Effect of mechanical ventilation on the improvement of the thermal performance of PCM-incorporated double external walls: A numerical investigation under different climatic conditions in Morocco[J]. Journal of Energy Storage,2021,38:1-16.
[13]ZHU N, HU P F, XU L H. A simplified dynamic model of double layers shape-stabilized phase change materials wallboards[J]. Energy and Buildings, 2013, 67: 508-516.
[14]邵必林, 杜星璇, 任秦龙. 夏热冬冷地区相变储能屋面节能效益的LBM数值模拟[J].新型建筑材料, 2019, 46(3): 130-135.
SHAO Bilin, DU Xingxuan, REN Qinlong. A LBM numerical study of the energy saving benefit of roof coupled with phase change material in hot summer and cold winter areas[J]. New Building Materials, 2019, 46(3): 130-135.
[15]陆耀庆. 实用空调供热设计手册[M].北京: 中国建筑工业出版社, 2008.
LU Yaoqing. Practical heating and air conditioning design manual[M].Beijing: China Building Industry Press,2008.
[16]雷宇, 朱娜, 彭波, 等. 武汉市某办公楼地源热泵-相变蓄冷系统的优化配置[J]. 流体机械, 2015, 43(2): 75-80.
LEI Yu, ZHU Na, PENG Bo, et al. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building[J]. Fluid Machinery, 2015, 43(2): 75-80.
[17]YU Jinghua, YANG Qingchen, YE Hong, et al. Thermal performance evaluation and optimal design of building roof with outer-layer shape-stabilized PCM[J]. Renewable Energy,2020,145:2538-2549.

相似文献/References:

[1]李 栋,胡宛玉,张成俊,等.相变玻璃围护结构蓄能特性及对室内热环境影响研究[J].西安建筑科技大学学报(自然科学版),2021,53(06):934.[doi:10.15986/j.1006-7930.2021.06.019 ]
 LI Dong,HU Wanyu,ZHANG Chengjun,et al.Energy storage characteristics of phase change glass envelope and its effect on indoor thermal environment[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):934.[doi:10.15986/j.1006-7930.2021.06.019 ]

备注/Memo

备注/Memo:
收稿日期:2021-06-26修改稿日期:2021-10-24
基金项目:国家自然科学基金项目(51778255)
第一作者:冷康鑫(1996-),男,硕士生,主要从事建筑围护结构节能. E-mail:m201873673@hust.edu.cn 通信作者:于靖华(1981-),女,教授,硕士生导师,主要从事可再生能源与能源综合利用. E-mail:yujinghua@hust.edu.cn

更新日期/Last Update: 2021-12-20