参考文献/References:
[1]GRAHAM L T, PARKINSON T, SCHIAVON S. Lessons learned from 20 years of CBE's occupant surveys[J]. Buildings and Cities, 2021, 2(1): 166-184.
[2]于竞宇, 於蓉, 张琦等. 基于机器学习的养老机构室内环境质量满意度评价模型[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(4): 587-593,609.
YU Jingyu, YU Rong, ZHANG Qi, et al.Evaluation model of indoor environment quality satisfaction for nursing homes based on machine learning[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(4): 587-593,609.
[3]KIM J, DE DEAR R. Nonlinear relationships between individual IEQ factors and overall workspace satisfaction[J]. Building and Environment, 2012, 49(1): 33-40.
[4]World Green Building Council. Health, wellbeing & productivity in offices: The next chapter for green building[J].The Architrcts' Journal,2014(11):48.
[5]朱颖心. 如何营造健康舒适的建筑热环境——建筑环境与人体舒适及健康关系的探索[J]. 世界建筑, 2021, 3: 42-46.
ZHU Yingxin. How to create a healthy and comfortable indoor thermal environment: Exploration on the relationship between the built environment and human comfort and health[J]. World Architecture, 2021, 3: 42-46.
[6]徐畅, 李念平, 伍志斌, 等. 夏季不同突变热环境下人员热舒适性实验研究[J]. 科学技术与工程, 2020, 20(29): 12097-12103.
XU Chang, LI Nianping, WU Zhibin, et al. Experimental study on thermal comfort in different transient thermal environments in Summer[J]. Science Technology and Engineering, 2020, 20(29): 12097-12103.
[7]兰丽, 连之伟. 改善睡眠热环境可提高睡眠质量[J]. 科学通报, 2020, 65(7): 533-534.
LAN Li, LIAN Zhiwei. Better sleeping thermal environment, better sleep quality[J]. Chinese Science Bulletin, 2020, 65(7): 533-534.
[8]FANG L, WYON D P, CLAUSEN G, et al. Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance[J]. Indoor Air, Supplement, 2004, 14(S): 74-81.
[9]LAN L, WARGOCKI P, WYON D P等. Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance[J]. Indoor Air, 2011, 21: 376-390.
[10]周翔, 许玲, 谢建彤, 等. 上海地区某高校办公室人员位移及空调器使用行为研究[J]. 建筑科学, 2020, 36(12): 1-7,73.
ZHOU Xiang, XU Ling, XIE Jiantong, et al. Personnel movement and air conditioner usage behavior for a university office in Shanghai[J]. Building Science, 2020, 36(12): 1-7,73.
[11]杨柳, 杨雯, 郑武幸, 等. 风扇对亚热带气候区民居室内热环境影响分析[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4): 544-550.
YANG Liu, YANG Wen, ZHENG Wuxing, et al. The impact of the fan on rural residential buildings indoor thermal environment in subtropical climate zone[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2016, 48(4): 544-550.
[12]林宇凡, 杨柳, 闫海燕, 等. 中国气候与人体热舒适气候适应研究[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(2): 251-255,265.
LIN Yufan, YANG Liu, YAN Haiyan, et al. Study on climate adaptation to thermal comfort in China[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2014, 46(2): 251-255,265.
[13]KIM J, SCHIAVON S, BRAGER G. Personal comfort models-A new paradigm in thermal comfort for occupant-centric environmental control[J]. Building and Environment, 2018, 132: 114-124.
[14]XIE J, LI H, LI C, et al. Review on occupant-centric thermal comfort sensing, predicting, and controlling[J]. Energy and Buildings, 2020, 226: 110392.
[15]李潇婧, 刘一航, 刘朋举, 等. 计算机视觉视频图像处理在暖通空调控制信号采集领域的应用[J]. 暖通空调, 2021, 51(6): 1-12.
LI Xiaojing, LIU Yihang, LIU Pengju, et al. Application of computer vision/video image processing in collecting HVAC control signals[J]. Heating Ventilating & Air Conditioning, 2021, 51(6): 1-12.
[16]YANG B, LI X, HOU Y, et al. Non-invasive(non-contact)measurements of human thermal physiology signals and thermal comfort/discomfort poses: A review[J]. Energy and Buildings, 2020, 224: 110261.
[17]CHENG X, YANG B, OLOFSSON T, et al. A pilot study of online non-invasive measuring technology based on video magnification to determine skin temperature[J]. Building and Environment, 2017, 121: 1-10.
[18]CHENG X, YANG B, HEDMAN A, et al. NIDL: A pilot study of contactless measurement of skin temperature for intelligent building[J]. Energy and Buildings, 2019, 198: 340-352.
[19]YANG B, CHENG X, DAI D, et al. Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings[J]. Building and Environment, 2019, 162(March): 106284.
[20]张文利, 郭向, 杨堃等. 面向室内环境控制的人员信息检测系统的设计与实现_张文利[J]. 北京工业大学学报, 2020, 46(5): 456-464.
ZHANG Wenli, GUO Xiang, YANG Kun, et al. Design and Implementation of a Personnel Information Detection System for Indoor Environment Control[J]. Journal of Beijing University of Technology, 2020, 46(5):456-464.
[21]卢知非,刘浩宇,陈文亮等. 红外人体测温精度补偿方法研究[J]. 红外技术, 2021, 43(9):895-901.
LU Zhifei, LIU Haoyu, CHEN Wenliang, et al. Accuracy compensation method for infrared human body temperature measurement accuracy[J]. Infrared Technology, 2021, 43(9):895-901.
[22]RANJAN J, SCOTT J. Thermal sense: determining dynamic thermal comfort preferences using thermographic imaging[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.Germany: Heidelberg,2016.
[23]BURZO M, ABOUELENIEN M, ALSTINE D Van, et al. Thermal discomfort detection using thermal imaging[C]//ASME 2017 International Mechanical Engineering Congress and Exposition.USA, Flordia:ASME.2017.
[24]METZMACHER H, WÖLKI D, SCHMIDT C, et al. Real-time human skin temperature analysis using thermal image recognition for thermal comfort assessment[J]. Energy and Buildings, 2018, 158: 1063-1078.
[25]PAVLIN B, PERNIGOTTO G, CAPPELLETTI F, et al. Real-time monitoring of occupants' thermal comfort through infrared imaging: A preliminary study[J]. Buildings, 2017, 7(10): 1-11.
[26]陈庆财, 鹿伟, 张威, 等. 基于人工智能技术预测热感觉的室内热环境控制[J]. 建筑技术, 2019, 50(2): 253-255.
CHEN Qingcai, LU Wei, ZHANG Wei, et al. Indoor thermal environment control base on thermal sensation predicted by artificial intelligence[J]. Architecture Technology, 2019, 50(2): 253-255.
[27]WANG Z, DE DEAR R, LUO M, et al. Individual difference in thermal comfort: A literature review[J]. Building and Environment, 2018, 138: 181-193.
[28]WANG Z, YU H, LUO M, et al. Predicting older people's thermal sensation in building environment through a machine learning approach: Modelling, interpretation, and application[J]. Building and Environment, 2019, 161: 106231.
[29]CHEN C, ROSS A. Evaluation of gender classification methods on thermal and near-infrared face images[C]//2011 International Joint Conference on Biometrics(IJCB).USA, Washington,DC:[s.n.]2011.
[30]WANG S, GAO Z, HE S, et al. Gender recognition from visible and thermal infrared facial images[J]. Multimedia Tools and Applications, 2016, 75: 8419-8442.
[31]NGUYEN D T, KIM K W, HONG H G, et al. Gender recognition from human-body images using visible-light and thermal camera videos based on a convolutional neural network for image feature extraction[J]. Sensors(Switzerland), 2017, 17(3):637-658.
[32]张军挺. 人脸检测及人脸年龄与性别识别方法[D]. 合肥:中国科学技术大学, 2017.
ZHANG Junting. The method of face detection and face age and gender recognization[D]. Heifei:University of Science and Technology of China, 2017.
[33]李超. 基于深度学习的人脸性别识别与年龄段估计的研究与实现[D]. 昆明:云南大学, 2019.
LI Chao. Research and implementation of gender recognition and age estimation by face based on deep learning[D]. Kunming: Yunnan University, 2019.
[34]HUYNH H T, NGUYEN H. Joint age estimation and gender classification of Asian faces using wide resNet[J]. SN Computer Science, 2020, 1: 284.
[35]刘玉妹. 基于人脸图像的性别分类[D]. 石家庄:河北师范大学, 2019.
LIU Yumei. Gender classification based on face images[D]. Shijiazhuang: Hebei Normal University, 2019.
[36]张珂. 基于卷积神经网络的人脸检测和人脸属性识别研究[D]. 济南:山东大学, 2019.
ZHANG Ke. Study on face detection and face attribute recognition based on convolutional neural network[D]. Jinan: Shandong University, 2019.
[37]魏操. 基于卷积神经网络的图像分类算法研究[D]. 成都:成都理工大学, 2019.
WEI Cao. Research of image classification algorithms based on convolutional neural network[D]. Chengdu: Chengdu University of Technology, 2019.
[38]PAN J, YANG Q. A Survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[39]MEMIS S, ARSLAN B, BATUR O Z, et al. A comparative study of deep learning methods on food classification problem[C]//2020 Innovations in Intelligent Systems and Applications Conference(ASYU).[s.n.],2020.
[40]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).USA, Las Vegas:IEEE,2016.
[41]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,USA,Hawaii:IEEE,2017.
[42]SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.USA,Washington,DC:IEEE,2002.