参考文献/References:
[1]雷淑忠, 沈祖炎, 刘振华. 超高层钢框筒结构体系截面尺寸的初步确定[J]. 建筑结构, 2005(6): 20-22.
LEI Shuzhong, SHEN Zuyan, LIU Zhenhua. Preliminary determination of section size of super high-rise steel frame tubular structure system[J]. Building Structure, 2005(6): 20-22.
[2]张浩,连鸣,苏明周. 含可更换剪切型耗能梁段的高强钢框筒结构抗震性能分析[J]. 建筑钢结构进展,2020,22(4):21-35.
ZHANG Hao, LIAN Ming, SU Mingzhou. Seismic performance analysis of high-strength steel framed tubular structures with replaceable sheartype energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(4):21-35.
[3]关彬林, 连鸣, 苏明周. 含可更换剪切型耗能梁段的组合钢框筒性能优势研究[J]. 建筑钢结构进展, 2020, 22(1): 26-34,46.
GUAN Binlin, LIAN Ming, SU Mingzhou. Research on the performance advantages of composite steel frame cylinders with replaceable shearing energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(1): 26-34, 46.
[4]关彬林,连鸣,苏明周,等.高层钢框筒结构截面尺寸预估的新方法[J].西安建筑科技大学学报(自然科学版),2018,50(4):526-535.
GUAN Binlin, LIAN Ming, SU Mingzhou, et al.A new method for estimati-ng the cross-sectional dimension of high-rise steel framed tubular structures[J].J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(4):526-535.
[5]BERTERO V V. Strength and deformation capac-ities of buildings under extreme environments[M]. Prentice-Hall: Englewood Cliffs, NJ, Structural Engineering and Structural Mechanics, Pister KS, 1977: 211-255.
[6]VAMVATSIKOS D, CORNELL C A. Incremental dy-namic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514.
[7]VAMVATSIKOS D, CORNELL C A. Applied incre-mental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2): 523-553.
[8]SHINOZUKA M, FENG M Q, KIM H K, et al. Nonlinear static procedure for fragility curve development[J]. Journal of Engineering Mechanics, 2000, 126(12): 1287-1295.
[9]吴巧云, 朱宏平, 樊剑. 基于增量动力分析的钢框架结构抗震性能评估[J]. 华中科技大学学报(自然科学版), 2012, 40(2): 35-39.
WU Qiaoyun, ZHU Hongping, FAN Jian. Seismic performance evaluation of steel frame structures based on incremental dynamic analysis[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(2): 35-39.
[10]杨文侠,孙国华,顾强,等.Y形偏心支撑钢框架结构的抗倒塌性能评估[J].西安建筑科技大学学报(自然科学版),2020,52(6):829-839.
YANG Wenxia, SUN Guohua, GU Qiang, et al. Evaluation of anti-collapse performance of Y-shaped eccentrically braced steel frame structure[J]. J.of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2020,52(6): 829-839.
[11]苏宁粉,周颖,吕西林,等.增量动力分析中地震动强度参数的有效性研究[J].西安建筑科技大学学报(自然科学版),2016,48(6):846-852.
SU Ningfen, ZHOU Ying, LV Xilin, et al. Validity of ground motion intensity parameters in incremental dynamic analysis[J]. J.of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2016, 48(6): 846-852.
[12]周颖, 吕西林, 卜一. 增量动力分析法在高层混合结构性能评估中的应用[J]. 同济大学学报(自然科学版), 2010, 38(2): 183-187,193.
ZHOU Ying, LU Xilin, BU Yi. Application of incremental dynamic analysis method in performance evaluation of high-rise hybrid structures[J]. Journal of Tongji University(Natural Science Edition), 2010, 38(2): 183-187,193.
[13]吕西林, 苏宁粉, 周颖. 复杂高层结构基于增量动力分析法的地震易损性分析[J]. 地震工程与工程振动, 2012, 32(5): 19-25.
LU Xilin, SU Ningfen, ZHOU Ying. Seismic vulnerability analysis of complex high-rise structures based on incremental dynamic analysis method[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(5): 19-25.
[14]关彬林, 连鸣, 苏明周. 含可更换剪切型耗能梁段的组合钢框筒截面尺寸预估方法探究[J]. 建筑钢结构进展, 2020, 22(3): 1-11,21.
GUAN Binlin, LIAN Ming, SU Mingzhou. Research on the estimation method of the section size of the composite steel frame cylinder with replaceable shearing energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(3): 1 -11,21.
[15]程倩倩,连鸣,苏明周,等.含端板螺栓连接耗能梁段的高强钢框筒结构基于性能的塑性设计方法研究[J].工程力学,2021,38(7):167-182.
CHENG Qianqian, LIAN Ming, SU Mingzhou, et al. Research on performance-based plastic design method of high-strength steel framed tubular structures with end-plate bolted energy-dissipating beam sections[J]. Engineering Mechanics, 2021, 38( 7):167-182.
[16]张浩, 连鸣, 苏明周. 耗能梁段布置方式对含可更换剪切型耗能梁段的高强钢框筒结构抗震性能的影响[J]. 建筑钢结构进展, 2020, 22(5): 51-63,132.
ZHANG Hao, LIAN Ming, SU Mingzhou. Influence of energy-dissipating beam section arrangement on seismic performance of high-strength steel framed tubular structures with replaceable shear-type energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(5): 51-63,132.
[17]李爽, 谢礼立. 近场问题的研究现状与发展方向[J]. 地震学报, 2007, 29(1): 102-111.
LI Shuang, XIE Lili. The research status and development direction of the near-field problem[J]. Acta Seismologica Sinica, 2007, 29(1): 102-111.
[18]KALKAN E, KUNNATH S K. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 2006, 22(2): 367-390.
[19]ZHANG H, LIAN M, SU M, et al. Lateral force distribution in the inelastic state for seismic design of high-strength steel framed-tube structures with shear links[J]. Struct Design Tall Spec Build, 2020,e1801.
[20]施炜, 叶列平, 陆新征. 基于一致倒塌风险的建筑抗震评价方法研究[J]. 建筑结构学报, 2012, 33(6): 1-7.
SHI Wei, YE Lieping, LU Xinzheng. Research on building seismic evaluation method based on consistent collapse risk[J]. Journal of Building Structures, 2012, 33(6): 1-7.
[21]CELIK O C, ELLINGWOOD B R. Seismic fragilities for non-ductile reinforced concrete frames-role of aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32(1): 1-12.
[22]ELLINGWOOD B R, CELIK O C, KINALI K. Fragility assessment of building structural systems in mid-america[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(13): 1935-1952.
[23]中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010.[S]. 北京: 中国建筑工业出版社, 2016.
Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Code for seismic design of buildings: GB 50011-2010[S]. Beijing: China Architecture and Construction Press, 2016.
[24]中国地震局. 中国地震动参数区划图:GB 18306-2015.[S]. 北京: 中国标准出版社, 2015.
China Earthquake Administration. Zoning map of earthquake parameters in China: GB 18306-2015[S]. Beijing: China Standard Press, 2015.