[1]刘艳峰,明 慧,罗 西,等.间歇供暖模式下高校教学建筑多目标排课优化研究[J].西安建筑科技大学学报(自然科学版),2022,54(05):710-717.[doi:10.15986/j.1006-7930.2022.05.009 ]
 LIU Yanfeng,MING Hui,LUO Xi,et al.Research on multi-objective course scheduling optimization of college teaching building under intermittent heating mode[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(05):710-717.[doi:10.15986/j.1006-7930.2022.05.009 ]
点击复制

间歇供暖模式下高校教学建筑多目标排课优化研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年05期
页码:
710-717
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Research on multi-objective course scheduling optimization of college teaching building under intermittent heating mode
文章编号:
1006-7930(2022)05-0710-08
作者:
刘艳峰12明 慧12罗 西12胡 亮12孙勇凯3
(1.西安建筑科技大学 西部绿色建筑国家重点实验室,陕西 西安 710055; 2.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055; 3.西安建筑科技大学 管理学院,陕西 西安 710055)
Author(s):
LIU Yanfeng12 MING Hui12 LUO Xi12 HU Liang12 SUN Yongkai3
(1.State Key Laboratory of Green Building in Western China, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China; 2.School of Building Services Science and Engineering, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China; 3.School of Management, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China)
关键词:
建筑节能 排课 联合仿真 多目标优化 遗传算法
Keywords:
building energy saving course timetabling co-simulation multi-objective optimization genetic algorithms
分类号:
TU83
DOI:
10.15986/j.1006-7930.2022.05.009
文献标志码:
A
摘要:
我国高校教学建筑的供暖能耗普遍较高.基于间歇供暖模式对高校课程安排进行优化,是通过改变不同教室的使用规律来降低教学楼整体能耗的有效方法.但仅以建筑节能为目的,而忽略课程授课节次的时间间隔应尽量均匀这一常规排课优化目标,会导致优化后的课程安排出现难以与学生客观学习规律相适应的不利结果.为解决以上问题,本研究提出了间歇供暖模式下,同时考虑建筑节能和课程授课时间间隔的高校教学建筑多目标排课优化方法,通过Building Controls Virtual Test Bed(BCVTB)平台建立EnergyPlus与Matlab的联合仿真模型,并利用遗传算法在不同权重的优化目标下对高校排课问题进行计算求解.研究结果表明,随着建筑节能目标所占权重的逐渐增大,排课优化结果存在如下规律:1)室外温度整体较低的授课日内所排课程减少,室外温度整体较高的授课日内所排课程增多; 2)所有教室中全天不供暖次数以及仅下午供暖的累计次数明显增多; 3)教室占用在时间上逐渐集中,一个教室在半天内课程安排全满的概率显著增加; 4)教学建筑典型周内累计供热量最多可降低31.1%.
Abstract:
The heating energy consumption of university teaching buildings in China is generally high. Optimization of curriculum arrangement based on intermittent heating mode is an effective way to reduce the overall energy consumption of teaching buildings by changing the use rules of different classrooms. However, it is only for the purpose of building energy conservation, while ignoring the conventional optimization goal of arranging courses that the interval between teaching sessions should be as uniform as possible, which will lead to adverse results that the optimized course arrangement is difficult to adapt to the objective learning laws of students. In order to solve the above problems, this study, considering both building energy conservation and course teaching time interval, proposes a multi-objective course scheduling optimization method for university teaching buildings under intermittent heating mode.The co-simulation model of EnergyPlus and Matlab is established through the Building Controls Virtual Test Bed( BCVTB )platform, and the genetic algorithm is used to calculate and solve the course scheduling problem under the optimization objective of different weights. The results show that, with the gradual increase of the weight of building energy saving objectives, the results of course scheduling optimization are as follows: 1)the number of courses scheduled in the teaching days with low outdoor temperature decreases, while the number of courses scheduled in the teaching days with high outdoor temperature increases; 2)the cumulative number of times that all classrooms are not heated all day and only heated in the afternoon has increased significantly; 3)classroom occupancy is gradually concentrated in time, and the probability that a classroom will be fully filled within half a day increases significantly; 4)the accumulated heat supply of teaching buildings in a typical week can be reduced by 31.1% at most.

参考文献/References:

[1]周思童, 沈意, 孙奇, 等.基于DeST-C对武汉地区办公建筑能耗影响因素的研究[J]. 中国科技信息, 2019(17): 70-72.
ZHOU Sitong, SHEN Yi, SUN qi, et al. Research on the influencing factors of office building energy consumption in Wuha based on DeST-C [J]. China Science and Technology Information,2019(17):70-72.
[2]CHUNG M H, RHEE E K. Potential opportunities for energy conservation in existing buildings on university campus: a field survey in Korea[J]. Energy Build, 2014, 78: 176-182.
[3]ASIMAKOPOULOS D A, SANTAMOURIS M, FARROU I, et al. Modeling the energy demand projection of the building sector in Greece in the 21st century[J]. Energy and Buildings, 2012, 49: 488-498
[4]GUL M S, PATIDAR S. Understanding the energy consumption and occupancy of a multipurpose academic building[J]. Energy Build, 2015, 87: 155-165.
[5]ROMANI Z, DRAOUI A, ALLARD F. Metamodeling the heating and cooling energy needs and simultaneous building envelope optimization for low energy building design in Morocco[J]. Energy Build, 2015, 102: 139-148.
[6]ANDERSON K, SONG K, LEE S, et al. Longitudinal analysis of normative energy use feedback on dormitory occupants[J]. Appl. Energy, 2017, 189: 623-639.
[7]IYER M, KEMPTON W, PAYNE C. Comparison groups on bills: automated, personalized energy information[J]. Energy Build, 2006, 38(8): 988-996.
[8]KORKAS C D, BALDI S, MICHAILIDIS I, et al. Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule[J]. Appl. Energy, 2015, 149: 194-203.
[9]KORKAS C D, BALDI S, MICHAILIDIS I, et al. Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage[J]. Appl. Energy, 2016, 163: 93-104.
[10]ZENG Y, ZHANG Z, KUSIAK A. Predictive modeling and optimization of a multi-zone HVAC s-ystem with data mining and firefly algorithms[J]. Energy, 2015, 86: 393-402.
[11]YANG Z, BECERIK-GERBER B. The coupled effects of personalized occupancy profile based HVAC schedule-s and room reassignment on building energy use[J]. Energy Build, 2014, 78: 113-122.
[12]SONG K, KWON N, ANDERSON K, et al. Predicting hourly energy consumption in buildings using occupancy-related characteristics of end-user groups[J]. Energy Build, 2017, 156: 121-133
[13]SETHANAN K, THEERAKULPISUT S, BENJAPIYAPORN C. Improving energy efficiency by classroom scheduling: a case study in a thai university[J]. Advanced Materials Research, 2014(931/932): 1089-1095.
[14]SONG K, KIM S, PARK M, et al. Energy efficiency-based course timetabling for university buildings[J]. Energy, 2017, 139: 394-405.
[15]KIM J, HONG T, JEONG J, et al. Establishment of an optimal occupant behavior considering the energy consumption and indoor environmental quality by region[J]. Appl. Energy, 2017, 204: 1431-1443.
[16]JAFARINEJAD T, ERFANI A, FATHI A, et al. Bi-level energy-efficient occupancy profile optimization integrated with demand-driven control strategy: University building energy saving[J]. Sustainable Cities and Society, 2019, 48: 101539.
[17]FATHI A, SALEHI M, MOHAMMADI M, et al. Cooling/Heating Load Management in Educational Buildings through Course Scheduling[J]. Journal of Building Engineering, 2021, 41: 102405.
[18]SUN Y, LUO X, LIU X. Optimization of a university timetable considering building energy efficiency: An approach based on the building controls virtual test bed platform using a genetic algorithm[J]. Journal of Building Engineering, 2021, 35: 102095.
[19]王文娟.基于效率的课表编排及运行管理优化研究:以苏州科技大学为例[J].智库时代, 2018(49):210-216.
WANG Wenjuan. Study on the Optimization of Course Schedule and Operation Management Based on Efficiency: taking Suzhou University of Science and Technology as an Example[J]. A think-tank era,2018(49):210-216.
[20]申树仁. 基于EnergyPlus的大空间能耗模拟与负荷分析研究[D].上海:上海理工大学, 2018.
SHEN Shuren. Energy simulation and load analysis o-f large space based on EnergyPlus[D]. Shanghai: University of for Science and Technology,2018
[21]何元园. 学分制下研究生课程排课算法的设计与实现[D].南京:南京师范大学, 2019.
HE Yuanyuan. Design and implementation of postgraduate course arrangement algorithm under credit system[D]. Nanjing: Nanjing Normal University, 2019.

相似文献/References:

[1]刘艳峰,陈迎亚,王登甲,等.垂直绿化对室内热环境影响测试研究[J].西安建筑科技大学学报(自然科学版),2015,47(03):423.[doi:10.15986/j.1006-7930.2015.03.021]
 LIU Yanfeng,CHEN Yingya,WANG Dengjia,et al.Research of vertical green impact on the indoor thermal environment[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(05):423.[doi:10.15986/j.1006-7930.2015.03.021]
[2]张 明,杨 柳,冯旭明.基于EnergyPlus的几种典型平面形状的塔式办公建筑的能耗差异分析[J].西安建筑科技大学学报(自然科学版),2013,45(04):565.[doi:10.15986/j.1006-7930.2013.04.017]
 ZHANG Ming,YANG Liu,FENG Xu-ming.Energy consumption difference analysis of some typical geometry office tower based on EnergyPlus[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(05):565.[doi:10.15986/j.1006-7930.2013.04.017]
[3]赵 亮,张吉礼,梁若冰.建筑能耗数据特性分析及优化采样方法研究[J].西安建筑科技大学学报(自然科学版),2013,45(05):688.[doi:10.15986/j.1006-7930.2013.05.014]
 ZHAO Liang,ZHANG Ji-li,LIANG Ruo-bing.Analysis on the characteristics of building energy consumption data and research of the optimized sampling method[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(05):688.[doi:10.15986/j.1006-7930.2013.05.014]
[4]徐 鹏1,赵嘉靖2,李俊明2.一种新型蒸发冷却式通风外墙的热工性能研究[J].西安建筑科技大学学报(自然科学版),2011,43(04):546.[doi:DOI:10.15986/j.1006-7930.2011.04.020]
 ,Thermal performance study on a new modular evaporativecooling ventilated wall[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(05):546.[doi:DOI:10.15986/j.1006-7930.2011.04.020]
[5]张 群1,2,梁 锐1,等.宁夏地区乡村民居节能设计研究[J].西安建筑科技大学学报(自然科学版),2011,43(04):570.[doi:DOI:10.15986/j.1006-7930.2011.04.023]
 ,,et al.Energy efficiency of rural dwellings in Ningxia Hui Autonomous Region[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(05):570.[doi:DOI:10.15986/j.1006-7930.2011.04.023]
[6]林康强,林育松.基于模糊气候聚类和改进BP神经网络的建筑气候数据清洗方法[J].西安建筑科技大学学报(自然科学版),2021,53(02):275.[doi:10.15986/j.1006-7930.2021.02.017]
 LIN Kangqiang,LIN Yusong.Building climate data cleaning method based on fuzzy climate clustering and improved BP neural network[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(05):275.[doi:10.15986/j.1006-7930.2021.02.017]
[7]史晓鹏,倪语涵,程征,等.寒冷地区自然通风型光伏双层皮幕墙全年节能特性研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):283.[doi:10.15986/j.1006-7930.2024.02.015]
 SHI Xiaopeng,NI Yuhan,CHENG Zheng,et al.Study on annual energy-saving characteristics of a natural ventilated photovoltaic double skin facade in cold region[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(05):283.[doi:10.15986/j.1006-7930.2024.02.015]
[8]史晓鹏,倪语涵,程征,等.寒冷地区自然通风型光伏双层皮幕墙全年节能特性研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):283.[doi:10.15986/j.1006-7930.2024.02.015]
 SHI Xiaopeng,NI Yuhan,CHENG Zheng,et al.Study on annual energy-saving characteristics of a natural ventilated photovoltaic double skin facade in cold region[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(05):283.[doi:10.15986/j.1006-7930.2024.02.015]

备注/Memo

备注/Memo:
收稿日期:2021-07-09修改稿日期:2022-10-08
基金项目:陕西省科技厅重点研发计划一般项目(2020SF-393)
第一作者:刘艳峰(1971—),男,教授,博士生导师,主要从事建筑节能与可再生能源应用.E-mail:yanfengliu@xauat.edu.cn
通信作者:罗 西(1988—),女,副教授,硕士生导师,主要从事区域综合能源系统规划.E-mail:xiluo@xauat.edu.cn
更新日期/Last Update: 2022-10-28