[1]杨 雯,张冠杰,李朝明,等.多因素影响下西部“一带一路”沿线城市建筑供热能耗的时空分布响应[J].西安建筑科技大学学报(自然科学版),2022,54(06):827-837.[doi:10.15986/j.1006-7930.2022.06.005 ]
 YANG Wen,ZHANG Guanjie,LI Zhaoming,et al.The spatio-temporal distribution response on building heating energy consumption of cities along “the Belt and Road” in Western China under multifactorial impact[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(06):827-837.[doi:10.15986/j.1006-7930.2022.06.005 ]
点击复制

多因素影响下西部“一带一路”沿线城市建筑供热能耗的时空分布响应()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年06期
页码:
827-837
栏目:
西部“一带一路”沿线城镇绿色更新发展
出版日期:
2022-12-28

文章信息/Info

Title:
The spatio-temporal distribution response on building heating energy consumption of cities along “the Belt and Road” in Western China under multifactorial impact
文章编号:
1006-7930(2022)06-0827-11
作者:
杨 雯12张冠杰2李朝明2郑何山2刘加平12
(1.西部绿色建筑国家重点实验室,陕西 西安 710055; 2.西安建筑科技大学 建筑学院,陕西 西安 710055)
Author(s):
YANG Wen12 ZHANG Guanjie2LI Zhaoming2 ZHENG Heshan2 LIU Jiaping12
(1.State Key Laboratory of Green Building in Western China, Xi'an 710055, China; 2.School of Architecture, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China)
关键词:
建筑供热能耗 空间自相关分析 时空分布 影响因素
Keywords:
building heating energy consumption spatial autocorrelation analysis temporal and spatial distribution influence factor
分类号:
TU832
DOI:
10.15986/j.1006-7930.2022.06.005
文献标志码:
A
摘要:
为了描述多因素影响下西部“一带一路”沿线城市建筑供热能耗的时空分布特征,通过空间相关分析获取2010—2020年建筑供热能耗的空间分布规律,采用标准差椭圆分析方法描述空间分布的时间演变格局.基于STIRPAT建立数学模型,揭示了建筑供热能耗受各因素(人口总量、城镇化率、人均供热面积、第三产业增长指数及技术创新水平)影响的规律特征.结果表明,西部“一带一路”沿线城市的供热能耗存在空间效应,仍处于不均衡发展阶段; 影响因素的权重分布也不尽相同,除青海外,西部“一带一路”沿线省份及自治区的建筑供热能耗总量的主要驱动力均为人均建筑供热面积,甘肃、宁夏和青海的建筑供热能耗强度的主要驱动力为技术创新水平.研究结果以期为相关政策的制定提供一定支持.
Abstract:
In order to describe the spatial-temporal distribution response characteristics on the buildings heating energy consumption of cities along the “the Belt and Road” in western China under multifactorial impact, the spatial distribution law of heating energy consumption of buildings from 2010 to 2020 was obtained through spatial correlation analysis, and the standard deviation ellipse analysis method was used to describe the temporal evolution pattern of spatial distribution. Based on STIRPAT, a mathematical model is established to reveal the regular characteristics of building heating energy consumption affected by various factors(total population, urbanization rate, per capita area, tertiary industry growth index and technological innovation level).The results show that there is a spatial effect on the intensity and total amount of heating energy consumption in cities along “the Belt and Road” in western China, which is still in an unbalanced development stage. The weight distribution of influencing factors is also different. Except Qinghai, the main driving force of the total building heating energy consumption of provinces and autonomous regions along “the Belt and Road” in western China is the per capita building heating area. The main driving force of the building heating energy consumption intensity in Gansu, Ningxia and Qinghai is the level of technological innovation. The research results are expected to provide some support for the formulation of relevant policies.

参考文献/References:

[1]GROSSI L, MUSSINI M. Inequality in energy intensity in the EU-28: Evidence from a new decomposition method[J]. The Energy Journal, 2017, 38(4): 1-18.
[2]周洁.中国建筑业能源强度时空分布与影响因素研究[D].西安:长安大学,2020.
ZHOU Jie. A study on the spatial and temporal distribution and influencing factors of energy intensity in China's construction industry [D]. Xi'an:Chang'an University, 2020.
[3]孙海玲,王红平.基于岭回归的城市建筑能耗增长驱动因素研究[J].城市发展研究,2013,20(5):21-24.
SUN Hailing, WANG Hongping. Research on driving factors of urban building energy consumption growth based on ridge regression [J]. Research on Urban Development, 2013,20(5): 21-24.
[4]刘晓君,胡升凯,李玲燕.中国省区建筑能耗时空分布与影响因素分析[J].数学的实践与认识,2020,50(6):74-85.
LIU Xiaojun, HU Shengkai, LI Lingyan. Spatial and temporal distribution of building energy consumption in China's provinces and regions and analysis of influencing factors [J]. Mathematical Practice and Understanding, 2020,50(6): 74-85.
[5]赵璐,赵作权,王伟.中国东部沿海地区经济空间格局变化[J].经济地理,2014,34(2):14-18,27.
ZHAO Lu, ZHAO Zuoquan, WANG Wei. Changes in the economic spatial pattern of the eastern coastal areas of China [J]. Economic Geography, 2014, 34(2): 14-18,27.
[6]EHRLICH P, HOLDREN J. Impact of population growth in population, resources and the environment[M]. Washington DC:US Government Printing Office,1972.
[7]韩梦. 城镇化下我国北方省份集中供热耗煤预测及节能潜力分析[D].徐州:中国矿业大学,2014.
HAN Meng. Coal consumption prediction and energy conservation potential analysis of central heating in northern provinces of China under urbanization [D]. Xuzhou:China University of Mining and Technology, 2014.
[8]刘兆珂. 城市化对民用建筑能耗的影响[D].上海:上海财经大学,2021.
LIU Zhaoke.Impact of urbanization on energy consumption of civil buildings [D]. Shanghai:Shanghai University of Finance and Economics, 2021.

备注/Memo

备注/Memo:
收稿日期:2022-11-01修改稿日期:2022-11-25
基金项目:中国工程院战略研究与咨询项目(2022-XZ-38); 中国博士后科研基金项目(2021M702551); 西部绿色建筑国家重点实验室自主研究基金课题项目(LSZZ202201)
第一作者:杨 雯(1990—),女,博士,讲师,从事建筑技术方面研究.E-mail:yangwen@xauat.edu.cn 通信作者:刘加平(1956—),男,博士,教授,从事建筑技术方面研究.E-mail:liujiaping@xauat.edu.cn
更新日期/Last Update: 2022-12-28