[1]李忠友,刘元雪,姚志华. 普通硅酸盐混凝土高温性能劣化分析模型[J]. 防灾减灾工程学报,2020, 40(2): 229-235. LI Zhongyou, LIU Yuanxue, YAO Zhihua. Analysis model on deterioration of ordinary silicate concrete under high temperature[j]. journal of disaster prevention and mitigation engineering, 2020, 40(2): 229-235.
[2]白卫峰,韩浩田,管俊峰,等. 考虑高温劣化效应的混凝土统计损伤本构模型研究[J]. 应用基础与工程科学学报, 2020,28(6):1398-1409.
BAI Weifeng, HAN Haotian, GUAN Junfeng, et al. Statistical damage model of concrete considering the effect of high temperature degradation[J]. Journal of Basic Science and Engineering, 2020, 28(6): 1398-1409.
[3]HAGER I. Behaviour of cement concrete at high temperature[J]. Bulletin of the Polish Academy of Sciences (Technical Sciences), 2013, 61(1): 145-154.
[4]申嘉荣,徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(1): 46-51.
SHEN Jiarong and XU Qianjun. Characteristics of Pore Structure Change and Compressive Strength Reduction of Concrete Under Elevated Temperatures[J]. Materials Reports, 2020, 34(1): 46-51.
[5]MA Q M, GUO R X, ZHAO Z M et al. Mechanical properties of concrete at high temperature-A review[J]. Construction and Building Materials, 2015, 93: 371-383.
[6]金浏,张仁波,杜修力,等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报,2021,54(3): 1-17.
JIN Liu, ZHANG Renbo, DU Xiuli, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures[J]. China Civil Engineering Journal, 2021, 54(3): 1-17.
[7]LI L, SHI L, WANG Q Y, et al. A review on the recovery of firedamaged concrete with post-fire-curing[J]. Construction and Building Materials, 2020, 237: 117564.
[8]孙磊. 大豆脲酶诱导沉积碳酸钙修复混凝土高温损伤试验研究[D]. 太原:太原理工大学,2021.
SUN Lei. Experimental Study on Repairing Concrete High Temperature Damage by Soybean Urease Induced Deposited Calcium Carbonate[D]. Taiyuan: Taiyuan University of Technology, 2021.
[9]PARK S J, YIM H J, KWAK H G. Effects of postfire curing conditions on the restoration of material properties of firedamaged concrete[J]. Construction and Building Materials, 2015, 99: 90-98.
[10]AKCA A H, OZYURT N. Effects of recuring on microstructure of concrete after high temperature exposure[J]. Construction and Building Materials, 2018, 168: 431-441.
[11]LI Q T, YUAN G L, SHU Q J. Effects of heating/cooling on recovery of strength and carbonation resistance of firedamaged concrete[J]. Magazine of Concrete Research, 66(18): 925-936.
[12]NOMAN M, YAQUB M, ABID M, et al. Effects of LowCost Repair Techniques on Restoration of Mechanical Properties of FireDamaged Concrete[J]. Frontiers in Materials, 2021, 8: 801464.
[13]NALON G H, RIBEIRO J C L, DE ARAU'JO E N D, et al. Effects of postfire curing on the mechanical properties of cement composites containing carbon black nanoparticles and multiwalled carbon nanotubes[J]. Construction and Building Materials, 2021, 310: 125118.
[14]SURESH N, RAO V, AKSHAY B S. Evaluation of mechanical properties and post-fire cured strength recovery of recycled aggregate concrete[J]. Journal of Structural Fire Engineering, 2022, 13(4): 491-505.
[15]李沛豪,屈文俊. 细菌诱导碳酸钙沉积修复混凝土裂缝[J]. 土木工程学报, 2010, 43(11):64-70.
LI Peihao, QU Wenjun. Remediation of concrete cracks by bacteriallyinduced calcium carbonated deposition[J]. China Civil Engineering Journal, 2010, 43(11): 64-70.
[16]袁杰,陈歆,何虹霖,等. 微生物矿化作用下混凝土裂缝修复与性能补偿[J]. 吉林大学学报(工学版), 2020, 50(2):641-647.
YUAN Jie, CHEN Xin, HE Honglin, et al. Repair and rejuvenation of cracked concrete by microbiologically induced calcite precipitation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 641-647.
[17]NIMAFAR M, SAMALI B, HOSSEINI S J, et al. Use of Bacteria Externally for Repairing Cracks and Improving Properties of Concrete Exposed to High Temperatures[J]. Crystals, 2021, 11: 1503.
[18]FAN Y N, DU H X, WEI H. Characteristics of Soybean Urease Mineralized Calcium Carbonate and Repair of Concrete Surface Damage[J]. Journal of Wuhan University of Technology (Material Science Edition), 2021, 36(1): 70-76.
[19]KARAHAN O. Residual compressive strength of firedamaged mortar after postfireaircuring[J]. Fire and Materials, 2011, 35: 561-567.
[20]YU K Q, LU Z D, YU J T. Residual compressive properties of strainhardening cementitious composite with different curing ages exposed to high temperature[J]. Construction and Building Materials, 2015, 98: 146-155.
[21]LIN Y, HSIAO C, YANG H, et al. The effect of postfirecuring on strengthvelocity relationship for nondestructive assessment of fire-damaged concrete strength[J]. Fire Safety Journal, 2011, 46:178-185.
[22]LI L, SHI L, WANG Q Y, et al. A review on the recovery of fire-damaged concrete with post-fire-curing[J]. Construction and Building Materials, 2020, 237: 117564.
[23]WEI H, FAN Y N, SUN L, et al. Experimental Study on High-Temperature Damage Repair of Concrete by Soybean Urease Induced Carbonate Precipitation[J]. Materials, 2022, 15: 2436.
[24]ARIOZ O. Effects of elevated temperatures on properties of concrete[J]. Fire Safety Journal, 2007, 42(8): 516-522.
[25]KHALIQ W, MUJEEB A. Effect of processed pozzolans on residual mechanical properties and macrostructure of high-strength concrete at elevated temperatures[J]. Structural Concrete, 2019, 20(1): 307-317.
[26]高世壮,薛善彬,张鹏,等.高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响[J].复合材料学报, 2022, 39(10): 4778-4787.
GAO Shizhuang, XUE Shanbin, ZHANG Peng, et al. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites [J]. Acta Materiae Compositae Sinica, 2022, 39 (10): 4778-4787.