[1]高芙蓉,姬永生,马占国,等.磷铝酸盐相变材料对受火混凝土高温损伤的同步修复研究[J].西安建筑科技大学学报(自然科学版),2023,55(05):661-668.[doi:10.15986/j.1006-7930.2023.05.004]
 GAO Furong,JI Yongsheng,MA Zhanguo,et al.Study on simultaneous repair of thermalinduced cracks within fire-exposed concrete by aluminophosphate phase change materials[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(05):661-668.[doi:10.15986/j.1006-7930.2023.05.004]
点击复制

磷铝酸盐相变材料对受火混凝土高温损伤的同步修复研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年05期
页码:
661-668
栏目:
出版日期:
2023-10-28

文章信息/Info

Title:
Study on simultaneous repair of thermalinduced cracks within fire-exposed concrete by aluminophosphate phase change materials
文章编号:
1006-7930(2023)05-0661-08
作者:
高芙蓉123姬永生123马占国123仇群彤13张洁134
(1.中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116; 2.江苏建筑职业技术学院 江苏建筑节能与建造技术协同创新中心,江苏 徐州 221116;3.中国矿业大学 江苏省土木工程环境灾变与结构可靠性重点实验室,江苏 徐州 221116;4.徐州工业职业技术学院 建筑工程学院,江苏 徐州 221140)
Author(s):
GAO Furong123 JI Yongsheng123 MA Zhanguo123 QIU Quntong13 ZHANG Jie134
(1.China University of Mining and Technology, State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou 221116, China; 2.Jiangsu Vocational Institute of Architectural Technology, Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou 221116, China; 3.China University of Mining and Technology, Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, Xuzhou 221116, China; 4.Xuzhou College of Industrial Technology, School of Architecture Engineering, Xuzhou 221140, China)
关键词:
受火混凝土高温损伤磷铝酸盐相变材料同步修复力学性能
Keywords:
fire-exposed concrete aluminophosphate phase change materials thermal-induced cracks simultaneous repair mechanical property
分类号:
TU525
DOI:
10.15986/j.1006-7930.2023.05.004
文献标志码:
A
摘要:
火灾高温效应下,硅酸盐水泥基混凝土内形成大量宏、细、微观裂缝(或高温损伤),严重削弱受火混凝土的力学性能.如何有效修复高温损伤对改善受火混凝土力学性能具有重要意义.本文通过将研制的磷铝酸盐相变材料掺入硅酸盐水泥,高温冷却过程中借助相变材料的固液固相变,实现同步修复受热水泥基体内高温损伤.通过确定磷铝酸盐相变材料对硅酸盐水泥高温后抗压强度、微观结构和矿物组成的影响规律,研究了磷铝酸盐相变材料对水泥基体内高温损伤的同步修复作用和对水泥高温后力学性能的改善效果.研究表明,掺加磷铝酸盐相变材料的水泥试件高温后微观结构完整,基体内裂缝明显少于纯水泥试件.高温后,掺加磷铝酸盐相变材料胶砂试件的抗压强度明显高于纯水泥胶砂试件.
Abstract:
Under high temperature effect of fire, a large number of macro, fine and micro cracks (or thermal-induced cracks ) are formed in Portland cement-based concrete, which seriously weakens the mechanical properties of fire-exposed concrete. Therefore, how to effectively repair thermal-induced cracks within concrete matrix is of great significance to improve mechanical strengths of fire-exposed concrete. In this investigation, a specially prepared aluminophosphate phase change material was mixed with Portland cement to realize simultaneous repair of thermal-induced cracks within concrete matrix by means of solid-liquid-solid phase transitions of the phase change material during heating and cooling process. The corresponding simultaneous repair effect on thermal-induced cracks within cement matrix and the improvement effect on mechanical properties of cement after high temperatures were investigated by determinations of changes in compressive strengths, micro structures and mineral compositions. The results show that the microstructure of cement specimens with aluminophosphate phase change materials is complete after high temperature, and the cracks in the matrix are significantly less than those of pure cement specimens. After high temperature, the compressive strength of the mortar specimens mixed with the aluminophosphate phase change material is significantly higher than that of the pure cement mortar specimens.

参考文献/References:

[1]李忠友,刘元雪,姚志华. 普通硅酸盐混凝土高温性能劣化分析模型[J]. 防灾减灾工程学报,2020, 40(2): 229-235.

  LI Zhongyou, LIU Yuanxue, YAO Zhihua. Analysis model on deterioration of ordinary silicate concrete under high temperature[j]. journal of disaster prevention and mitigation engineering, 2020, 40(2): 229-235.
[2]白卫峰,韩浩田,管俊峰,等. 考虑高温劣化效应的混凝土统计损伤本构模型研究[J]. 应用基础与工程科学学报, 2020,28(6):1398-1409.
  BAI Weifeng, HAN Haotian, GUAN Junfeng, et al. Statistical damage model of concrete considering the effect of high temperature degradation[J]. Journal of Basic Science and Engineering, 2020, 28(6): 1398-1409.
[3]HAGER I. Behaviour of cement concrete at high temperature[J]. Bulletin of the Polish Academy of Sciences (Technical Sciences), 2013, 61(1): 145-154.
[4]申嘉荣,徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(1): 46-51.
  SHEN Jiarong and XU Qianjun. Characteristics of Pore Structure Change and Compressive Strength Reduction of Concrete Under Elevated Temperatures[J]. Materials Reports, 2020, 34(1): 46-51.
[5]MA Q M, GUO R X, ZHAO Z M et al. Mechanical properties of concrete at high temperature-A review[J]. Construction and Building Materials, 2015, 93: 371-383.
[6]金浏,张仁波,杜修力,等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报,2021,54(3): 1-17.
  JIN Liu, ZHANG Renbo, DU Xiuli, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures[J]. China Civil Engineering Journal, 2021, 54(3): 1-17.
[7]LI L, SHI L, WANG Q Y, et al. A review on the recovery of firedamaged concrete with post-fire-curing[J]. Construction and Building Materials, 2020, 237: 117564.
[8]孙磊. 大豆脲酶诱导沉积碳酸钙修复混凝土高温损伤试验研究[D]. 太原:太原理工大学,2021.
  SUN Lei. Experimental Study on Repairing Concrete High Temperature Damage by Soybean Urease Induced Deposited Calcium Carbonate[D]. Taiyuan: Taiyuan University of Technology, 2021.
[9]PARK S J, YIM H J, KWAK H G. Effects of postfire curing conditions on the restoration of material properties of firedamaged concrete[J]. Construction and Building Materials, 2015, 99: 90-98.
[10]AKCA A H, OZYURT N. Effects of recuring on microstructure of concrete after high temperature exposure[J]. Construction and Building Materials, 2018, 168: 431-441.
[11]LI Q T, YUAN G L, SHU Q J. Effects of heating/cooling on recovery of strength and carbonation resistance of firedamaged concrete[J]. Magazine of Concrete Research, 66(18): 925-936.
[12]NOMAN M, YAQUB M, ABID M, et al. Effects of LowCost Repair Techniques on Restoration of Mechanical Properties of FireDamaged Concrete[J]. Frontiers in Materials, 2021, 8: 801464.
[13]NALON G H, RIBEIRO J C L, DE ARAU'JO E N D, et al. Effects of postfire curing on the mechanical properties of cement composites containing carbon black nanoparticles and multiwalled carbon nanotubes[J]. Construction and Building Materials, 2021, 310: 125118.
[14]SURESH N, RAO V, AKSHAY B S. Evaluation of mechanical properties and post-fire cured strength recovery of recycled aggregate concrete[J]. Journal of Structural Fire Engineering, 2022, 13(4): 491-505.
[15]李沛豪,屈文俊. 细菌诱导碳酸钙沉积修复混凝土裂缝[J]. 土木工程学报, 2010, 43(11):64-70.
  LI Peihao, QU Wenjun. Remediation of concrete cracks by bacteriallyinduced calcium carbonated deposition[J]. China Civil Engineering Journal, 2010, 43(11): 64-70.
[16]袁杰,陈歆,何虹霖,等. 微生物矿化作用下混凝土裂缝修复与性能补偿[J]. 吉林大学学报(工学版), 2020, 50(2):641-647.
  YUAN Jie, CHEN Xin, HE Honglin, et al. Repair and rejuvenation of cracked concrete by microbiologically induced calcite precipitation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 641-647.
[17]NIMAFAR M, SAMALI B, HOSSEINI S J, et al. Use of Bacteria Externally for Repairing Cracks and Improving Properties of Concrete Exposed to High Temperatures[J]. Crystals, 2021, 11: 1503.
[18]FAN Y N, DU H X, WEI H. Characteristics of Soybean Urease Mineralized Calcium Carbonate and Repair of Concrete Surface Damage[J]. Journal of Wuhan University of Technology (Material Science Edition), 2021, 36(1): 70-76.
[19]KARAHAN O. Residual compressive strength of firedamaged mortar after postfireaircuring[J]. Fire and Materials, 2011, 35: 561-567.
[20]YU K Q, LU Z D, YU J T. Residual compressive properties of strainhardening cementitious composite with different curing ages exposed to high temperature[J]. Construction and Building Materials, 2015, 98: 146-155.
[21]LIN Y, HSIAO C, YANG H, et al. The effect of postfirecuring on strengthvelocity relationship for nondestructive assessment of fire-damaged concrete strength[J]. Fire Safety Journal, 2011, 46:178-185.
[22]LI L, SHI L, WANG Q Y, et al. A review on the recovery of fire-damaged concrete with post-fire-curing[J]. Construction and Building Materials, 2020, 237: 117564.
[23]WEI H, FAN Y N, SUN L, et al. Experimental Study on High-Temperature Damage Repair of Concrete by Soybean Urease Induced Carbonate Precipitation[J]. Materials, 2022, 15: 2436.
[24]ARIOZ O. Effects of elevated temperatures on properties of concrete[J]. Fire Safety Journal, 2007, 42(8): 516-522.
[25]KHALIQ W, MUJEEB A. Effect of processed pozzolans on residual mechanical properties and macrostructure of high-strength concrete at elevated temperatures[J]. Structural Concrete, 2019, 20(1): 307-317.
[26]高世壮,薛善彬,张鹏,等.高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响[J].复合材料学报, 2022, 39(10): 4778-4787.
  GAO Shizhuang, XUE Shanbin, ZHANG Peng, et al. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites [J]. Acta Materiae Compositae Sinica, 2022, 39 (10): 4778-4787.

备注/Memo

备注/Memo:
收稿日期:2022-07-15修回日期:2023-01-02
基金项目:国家重点研发计划(2019YFC1904304);国家自然科学基金(51972337);江苏建筑节能与建造技术协同创新中心青年博士基金指导项目(SJXTBZ2102)
第一作者:高芙蓉(1989—),女,博士,助理研究员,主要研究方向为土木工程新材料,混凝土抗火.E-mail: furonggao@sina.com
更新日期/Last Update: 2023-11-02