[1]韩庆,韩玮,刘海波,等.CFRP复合材料板材的耐水酸碱性能研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):93-102.[doi:10.15986/j.1006-7930.2024.01.012]
 HAN Qing,HAN Wei,LIU Haibo,et al.Hygrothermal resistance of CFRP composites in water, acid and alkali environments[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(01):93-102.[doi:10.15986/j.1006-7930.2024.01.012]
点击复制

CFRP复合材料板材的耐水酸碱性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年01期
页码:
93-102
栏目:
出版日期:
2024-02-28

文章信息/Info

Title:
Hygrothermal resistance of CFRP composites in water, acid and alkali environments
文章编号:
1006-7930(2024)01-0093-10
作者:
韩庆1韩玮1刘海波1刘延峰1杨超1王少强2咸贵军2
(1.中国石油化工股份有限公司 胜利油田分公司技术检测中心,山东 东营 257000;2.哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150090)
Author(s):
HAN Qing1 HAN Wei1 LIU Haibo1 LIU Yanfeng1YANG Chao1 Wang Shaoqiang2 XIAN Guijun2
(1.Technology Inspection Center of Shengli Oilfield,SINOPEC,Dongying 257000,China;2.School of Civil Engineering,Harbin Institute of Technology(HIT),Harbin 150090,China)
关键词:
CFRP复合材料腐蚀溶液性能演化树脂塑化与水解界面脱粘
Keywords:
CFRP composites corrosive solution performance evolutions resin plasticization and hydrolysis interface debonding
分类号:
TU532
DOI:
10.15986/j.1006-7930.2024.01.012
文献标志码:
A
摘要:
腐蚀环境下碳纤维增强环氧树脂(CFRP)复合材料的性能退化是影响材料与结构安全服役的关键.为获得CFRP板材在腐蚀溶液中的耐久性能,将CFRP板材浸泡在水、酸与碱溶液中长达150 d.通过水吸收、热力学测试与微观结构分析获得CFRP板材的长期性能演化.结果表明:树脂板与CFRP板材在水、酸与碱溶液中的水吸收行为类似.在酸溶液中,树脂板与CFRP板材均获得较高的水吸收量,这是因为酸溶液促进了树脂的松弛作用,为水分子的进一步侵入提供了更多的扩散空间.此外,树脂的水解作用降低了树脂板与CFRP板材水吸收量.长期的加速老化导致CFRP板材拉伸强度退化高达29.7%,玻璃化转变温度退化高达12.4%.CFRP板材拉伸强度的退化主要由树脂的塑化与水解、纤维与树脂界面的脱粘所导致.碱溶液加速纤维与树脂界面脱粘、树脂水解,这导致碱溶液浸泡下的CFRP板材拉伸强度退化远大于水与酸溶液,其纤维与树脂界面完整性最差,纤维表面没有树脂残留.CFRP板材玻璃化转变温度的退化主要受控于树脂的塑化.酸溶液下玻璃化转变温度的退化程度远大于水与碱溶液,这是因为酸溶液下CFRP板材拥有更高的吸水率,导致树脂发生更严重的塑化作用.
Abstract:
The degradation of carbon fiber reinforced epoxy polymer (CFRP) composites in corrosive environment is the key to the service security of materials and structures. In order to obtain the aging resistance of CFRP plate in corrosive solution, CFRP plate is immersed in water, acid and alkali solution for 150 days. The long-term performance evolutions of CFRP plate are obtained by water absorption, thermal and mechanical tests, microstructure analysis. The results show that the water absorption behavior of resin plate is similar to that of CFRP plate in water, acid and alkali solution. In the acid solution, both the resin and CFRP plate have higher water absorption, which is because the acid solution promotes the resin relaxation and provides more space for the further ingress of water molecules. In addition, the resin hydrolysis reduces the water absorption of resin and CFRP plate. The long-term accelerated aging leads to a degradation of up to 29.7% in the tensile strength and 12.4% in the glass transition temperature of CFRP plates. The resin plasticization and hydrolysis, the interface debonding between fiber and resin are the main factors causing the degradation of tensile strength of CFRP plate. The alkali solution accelerates the debonding of the fiber resin interface and resin hydrolysis, which leads to a much greater degradation of the tensile strength of CFRP sheets soaked in alkaline solution than in water and acid solution. The glass transition temperature of CFRP plate is mainly controlled by the resin plasticization. The degradation degree of glass transition temperature in acid solution is much greater than that of water and alkali solution, which is because CFRP plate has higher water absorption in acid solution, resulting in more serious resin plasticization.

参考文献/References:

[1]陈光明,赵程,成彤,等.持载对FRP混凝土钢双壁空心柱轴压承载能力影响[J].西安建筑科技大学学报(自然科学版),2022,54(2):284-290.
CHEN Guangming, ZHAO Cheng, CHENG Tong, et al. Effects of sustained load on the axial loadcarrying capacity of hybrid FRPconcretesteel doubleskin tubular column[J]. J. Xi′an Univ. of Arch. & Tech (Natural Science Edition) ,2022,54(2):284-290.
[2]周玲珠,万钧涛,郑愚,等.GFRP筋与海水海砂高掺量粉煤灰自密实混凝土的粘结性能研究[J].西安建筑科技大学学报(自然科学版),2022,54(2):211-219,236.
ZHOU Lingzhu, WANG Juntao, ZHENG Yu, et al. Study on bond behavior of GFRP bars and selfcompacting concrete mixed with seawater sea-sand and high-volume fly ash[J]. J. Xi′an Univ. of Arch. & Tech (Natural Science Edition), 2022,54(2):211-219,236.
[3]韩娟, 刘伟庆, 方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用 [J]. 南京工业大学学报:自然科学版, 2020, 42(5): 543-554.
HAN Juan, LUI Weiqing, FANG Hai. Application of fiber-reinforced resin matrix composites in the civil infrastructure fiel [J]. Journal of Nanjing Tech University: Nature Science Edition, 2020, 42(5): 543-554.
[4]常鑫泉, 汪昕, 刘长源, 等. 预应力FRP板加固RC梁抗弯性能有限元模型可靠性评价 [J]. 南京工业大学学报(自然科学版), 2021, 43(3): 318-328.
CHANG Xinquan, WANG Xin, LIU Changyuan, et al. Reliability evaluation of finite element model for flexural behavior of RC beams reinforced with prestressed FRP laminates[J]. Journal of Nanjing Tech University(Nature Science Edition),2021, 43(3): 318-328.
[5]高鹏,袁大明,王田宇,等.双向纤维布约束加固钢筋混凝土柱的FRP锚钉设计方法研究[J].西安建筑科技大学学报(自然科学版),2022,54(2):278-283.
GAO Peng, YUAN Daming, WANG Tianyu, et al. Study on design method of FRP anchor in RC columns confined with bidirectional FRP sheets [J]. J. Xi′an Univ. of Arch. & Tech (Natural Science Edition), 2022,54(2):278-283.
[6]李承高, 郭瑞, 黄翔宇, 等. 碳纤维增强树脂复合材料(CFRP)拉挤板材的楔形-挤压锚固机制 [J]. 南京工业大学学报(自然科学版), 2021, 43(3): 358-365.
LI Chenggao, GUO Rui, HUANG Xiangyu, et al. Wedgeextrusion anchorage mechanism of pultruded CFRP plate [J]. Journal of Nanjing Tech University(Nature Science Edition), 2021, 43(3): 358-365.
[7]郭瑞,李承高,咸贵军,等.碳-玻纤维混杂复合材料杆体的力学与耐久性能研究[J].西安建筑科技大学学报(自然科学版),2022,54(2):174-183.
GUO Rui, LI Chenggao, XIAN Guijun, et al. Study on mechanical and durability of carbon-glass fiber hybrid composite rod [J]. J. Xi′an Univ. of Arch. & Tech (Natural Science Edition), 2022,54(2):174-183.
[8]GUO R, XIAN G, LI F, et al. Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites [J]. Construction and Building Materials, 2022, 315: 125710.
[9]WANG J, GANGARAO H, LIANG R F, et al. Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review [J]. J. Reinf. Plast. Comp., 2016, 35(3): 179-211.
[10]冯翌浩,王云英,陈新文,等.纤维增强树脂基复合材料湿热老化行为的研究进展[J].南昌航空大学学报(自然科学版),2022,36(1):41-52,85.
FENG Yihao, WANG Yunying, CHEN Xinwen, et al. Reserch progress on hygrothermal aging behavior of fiber reinforced resin matrix composites [J]. Journal of Nanchang Hangkong University(Natural Sciences), 2022,36(1):41-52,85.
[11]马少华,许赞,许良,等.湿热-高温循环老化对碳纤维增强双马树脂基复合材料界面性能的影响[J].高分子材料科学与工程,2018,34(3):54-59,66.
MA Shaohua, XU Zan, XU Liang, et al. The effect of hydrothermal-high temperature cyclic aging on the interfacial properties of carbon fiber reinforced bismaleic resin matrix composites[J]. Polymer Materials Science & Engineering, 2018,34(3):54-59,66.
[12]XIAN G J, KARBHARI V M. DMTA based investigation of hygrothermal ageing of an epoxy system used in rehabilitation [J]. J. Appl. Polym. Sci., 2007, 104(2): 1084-1094.
[13]朱礼宝,李永清,朱锡.温度对玻璃纤维/环氧复合材料吸湿扩散行为的影响[J].航空材料学报,2021,41(6):74-80.
ZHU Libao, LI Yongqing, ZHU Xi. Effect of temperature on moisture absorption and diffusion behavior of glass fiber/epoxy composites [J]. Journal of Aeronautical Materials 2021,41(6):74-80.
[14]喻健,何宇廷,冯宇,等.环氧树脂基复合材料加筋板结构吸湿行为研究[J].北京航空航天大学学报,2021,47(9):1908-1917.
YU Jian, HE Yuting, FENG Yu, et al. Study on moisture absorption behavior of epoxy resin matrix composite stiffened panel [J]. Journal of Beijing University of Aeronautics and Astronautics, 2021,47(9):1908-1917.
[15]KARBHARI V M, XIAN G. Hygrothermal effects on high VF pultruded unidirectional carbon/epoxy composites: Moisture uptake [J]. Composites Part B: Engineering, 2009, 40(1): 41-49.
[16]BAO L R, YEE A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: Part II - woven and hybrid composites [J]. Compos Sci Technol, 2002, 62(16): 2111-2119.
[17]雷永鹏,康振航,刘驻,等.孔隙率对碳纤维/尼龙6复合材料湿热性能影响的数值模拟研究[J].复合材料学报,2023,40(2):1154-1166.
LEI Yongpeng, KANG Zhenhang, LIU Zhu, et al. Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites[J]. Acta Materiae Compositae Sinica,2023,40(2):1154-1166.
[18]袁应立,王继辉.两种玻璃纤维增强复合材料体系的湿热老化研究[J].玻璃钢/复合材料,2017(10):79-84.
YUAN Yingli, WANG Jihui. Study on hygrothermal aging of two kinds of glass fiber reinforced composites [J]. Composites Science and Engineering, 2017(10):79-84.
[19]王俊,刘伟庆,赵慧敏,等.载荷与氯离子耦合作用下玻璃纤维增强不饱和聚酯复合材料吸湿性能[J].复合材料学报,2014,31(5):1173-1178.
WANG Jun, LIU Weiqing, ZHAO Huimin, et al. Hygroscopic properties of glass fiber reinforced unsaturated polyester composites under coupling action of load and chloride ion [J]. Acta Materiae Compositae Sinica, 2014,31(5):1173-1178.
[20]CHENG Z, KONG F, ZHANG X. Application of the Langmuir-type diffusion model to study moisture diffusion into asphalt films [J]. Construction and Building Materials, 2020: 121192.
[21]MUNOZ E, GARCIAMANRIQUE J A. Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites[J]. International Journal of Polymer Science, 2015,6:1-10.
[22]ZHOU J M, LUCAS J P. Hygrothermal effects of epoxy resin. Part Ⅰ:The nature of water in epoxy[J]. Polymer, 1999, 40(20):5505-5512.
[23]李风,王亭沂,张瑾,等.环氧乙烯基酯树脂及其复合材料高温高压矿化水条件下老化性能研究[J].复合材料科学与工程,2022(8):82-88.
LI Feng, WANG Tingyi, ZHANG Jin, et al. Study on aging properties of epoxy vinyl ester resin and its composites under high temperature and high pressure mineralized water [J]. Composites Science and Engineering, 2022(8):82-88.
[24]刘佳园,杨明航,孙鲁振,等.中温固化热熔环氧树脂耐湿热性能研究[J].塑料工业,2022,50(9):55-61.
LIU Jiayuan, YANG Minghang, SUN Luzhen, et al. Study on the moisture and heat resistance of medium temperature curing hot melt epoxy resin[J]. China Plastics Industry, 2022,50(9):55-61.
[25]洪斌. CFRP板材的拉挤制备工艺及其耐湿热性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
HONG Bin. Study on the pultrusion process of CFRP plate and its hygrothermal duability[D]. Harbin: Harbin Institute of Technology, 2012.
[26]曲原. CFRP材料湿热老化性能及其尺寸加速效应试验与分析[D]. 大连:大连理工大学, 2014.
QU Yuan. Heat aging properties and size accelerating effect of CFRP[D]. Dalian: Dalian University of Technology, 2014.
[27]张彦红,杨勇,新姚勇, 等. 湿热环境下FRP的耐久性能衰减模型研究//中国硅酸盐学会玻璃钢分会第二十届全国玻璃钢/复合材料学术交流会暨中国玻璃钢/复合材料学科建设、学术发展40年回顾与展望活动论文集[C].武汉:中国硅酸盐学会玻璃钢分会.中国硅酸盐学会, 2014:7.
ZHANG Yanhong, YANG Yong, XIN Yaoyong, et al. Study on durability decay model of FRP in hygrothermal environment. The 20th National FRP/Composites Academic Exchange Conference of FRP Branch of China Institute of Ceramics, and the proceedings of the 40-year Review and Prospect of the Academic Development of FRP/composites in China[C]. Wuhan:FRP Branch of China Institute of Ceramics. China Institute of Ceramics, 2014:7.
[28]RAY B C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites [J]. Journal of colloid and interface science, 2006, 298(1): 111-117.
[29]GAVARI M M, RAD A Y, GAVARI M M, et al. Environmental durability of materials and bonded joints involving fiber reinforced polymers and concerte[J]. 2008, 1042: 187-9.
[30]ASTM international. Standard test method for tensile properties of polymer matrix composite materials, ASTM D3039/3039M[S]. United States: ASTM international, 2008.
[31]ASTM international. Standard Test Method for Tensile Properties of Plastics, ASTM D638[S]. United States: ASTM international, 2014.
[32]ASTM international. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM D790[S]. United States: ASTM international, 2007.
[33]ASTM international. Standard Test Method for Assignment of the Glass Transition Temperature by dynamic mechanical analysis, ASTM E1640[S]. United States: ASTM international, 2023.

备注/Memo

备注/Memo:
收稿日期:2022-09-16修回日期:2023-02-01
基金项目:中国石化科技攻关项目(420075-1)
第一作者:韩庆(1972—),男,本科,高级工程师,主要从事设备设施检验检测研究.E- mail:hanqing293.slyt@sinopec.com
更新日期/Last Update: 2024-04-08