[1]晁夫奎. 我国废旧轮胎资源化技术应用现状及研究方向[C]//中国环境科学学会2021年科学技术年会, 北京:中国环境科学出版社, 2021.
CHAO Fukui. Application status and research direction of waste tire recycling technology in China[C]//Meeting of the Chinese Society for Environmental Sciences, Beijing:China Environment Publishing Group, 2021.
[2]MUCSI G, SZENCZI A, NAGY S. 2Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire[J]. Journal of Cleaner Production, 2018, 178: 429-440.
[3]BADAGL K, KALKAN E M, DENIZ V. End of life tyre management: Turkey case[J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 577-584.
[4]RUWONA W, DANHA G, MUZENDA E. A Review on material and energy recovery from waste tyres[J]. Procedia Manufacturing, 2019, 35: 216-222.
[5]YANG N Z, ZHANG Q, SHI W, et al. Advances in properties of rubber reinforced soil[J]. Advances in Civil Engineering, 2020, 2020: 6629757.
[6]THOMAS S B, GUPTA C R. Properties of high strength concrete containing scrap tire rubber[J]. Journal of Cleaner Production, 2016, 113: 86-92.
[7]ABBASPOUR M, AFLAKI E, NEJAD M F. Reuse of waste tire textile fibers as soil reinforcement[J]. Journal of Cleaner Production, 2019, 207: 1059-1071.
[8]XU F Y, ZHANG R H. Design of soilbagprotected slopes in expansive soils[J].Geotextiles and Geomembranes, 2021, 49(4): 1036-1045.
[9]时伟, 张亮, 杨忠年, 等. 冻融循环条件下膨胀土力学特性试验研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(4): 480-485.
SHI Wei, ZHANG Liang, YANG Zhongnian, et al. Experimental study on mechanical properties of expansive soil of artificial preparation under freeze-thaw cycle conditions[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(4): 480-485.
[10]崔郁雪, 杨忠年, 时伟, 等. 冻融循环下非饱和膨胀土一维土柱模型试验研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 393-403.
CUI Yuxue, YANG Zhongnian, SHI Wei, et al. Experimental study on one dimensional soil column model of unsaturated expansive soil under freezethaw cycles[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(3): 393-403.
[11]张莹莹, 杨忠年, 时伟, 等. 冻融循环作用下膨胀土边坡稳定性模型试验研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(2): 257-266.
ZHANG Yingying, YANG Zhongnian, SHI Wei, et al. Model test study on the stability of expansive soil slope under freeze-thaw cycle[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(2): 257-266.
[12]NARANI S S, ABBASPOUR M, HOSSEINI S, et al. Sustainable reuse of waste tire textile fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers[J]. Journal of Cleaner Production, 2020, 247: 119151.
[13]袁超, 周峙, 张家铭, 等. 环氧树脂玻璃纤维对水泥改性膨胀土的加固机理试验研究[J]. 武汉大学学报(工学版), 2021, 54(8): 709-716,724.
YUAN Chao, ZHOU Zhi, ZHANG Jiaming, et al. Experimental study on strengthening mechanism of adding epoxy resin and glass fiber to cement modified expansive soil[J]. Journal of Wuhan University (Engineering), 2021, 54(8): 709-716,724.
[14]费少刚, 王保田, 单熠博, 等. 硅灰、水泥复合改良膨胀土试验研究[J]. 水电能源科学, 2022, 40(9): 190-193.
FEI Shaogang, WANG Baotian, SHAN Yibo, et al. Experimental study on composite improvement of expansive soil with silica fume and cement[J]. Water Resources and Power, 2022, 40(9): 190-193.
[15]余梦, 张家铭, 周杨, 等. MICP技术改性膨胀土试验研究[J]. 长江科学院院报, 2021, 38(5): 103-108,122.
YU Meng, ZHANG Jiaming, ZHOU Yang, et al. Experimental study on modifying expansive soil by MICP technology[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 103-108,122.
[16]韦晨. NaCl溶液对改性陕南膨胀土强度变形特性研究[D].西安: 西安工业大学, 2020.
WEI Chen. Research on the strength and deformation characteristics of modified expansive soil in Southern Shaanxi by NaCl solution[D]. Xi′an: Xi′an Technological University, 2020.
[17]SABERIAN M, LI J, NGUYEN B, et al. Permanent deformation behaviour of pavement base and subbase containing recycle concrete aggregate, coarse and fine crumb rubber[J]. Construction and Building Materials, 2018, 178: 51-58.
[18]CHEGENIZADEH A, KERAMATIKERMAN M, SANTA G Dalla, et al. Influence of recycled tyre amendment on the mechanical behaviour of soilbentonite cutoff walls[J]. Journal of Cleaner Production, 2018, 177: 507-515.
[19]DJADOUNI H, TROUZINE H, CORREIA A Gomes, et al. 2D numerical analysis of a cantilever retaining wall backfilled with sandtire chips mixtures[J]. European Journal of Environmental and Civil Engineering, 2019, 25(6): 1119-1135.
[20]LIU L, CAI G, LIU S. Compression properties and micromechanisms of rubber sand particle mixtures considering grain breakage[J]. Construction and Building Materials, 2018, 187: 1061-1072.
[21]TASALLOTI A, CHIARO G, MURALI A, et al. Recycling of endoflife tires (ELTs) for sustainable geotechnical applications: A New Zealand perspective[J]. Applied Sciences, 2021, 11(17): 7824.
[22]SABERIAN KHOTBEHSARA M Mehrinejad, JAHANDARI S, et al. Experimental and phenomenological study of the effects of adding shredded tire chips on geotechnical properties of peat[J]. International Journal of Geotechnical Engineering, 2018, 12(4): 347-356.
[23]AKBARIMEHR D, ESLAMI A, AFLAKI E. Geotechnical behaviour of clay soil mixed with rubber waste[J]. Journal of Cleaner Production, 2020, 271: 122632.
[24]DUNHAM-FRIEL J, CARRARO H J A. Effects of compaction effort, inclusion stiffness, and rubber size on the shear strength and stiffness of expansive soil-rubber (ESR) mixtures[C]//Proceedings of the Geo-congress. Atlanta: ASCE, 2014.
[25]路钊驰, 杨忠年, 刘继明, 等. 冻结橡胶加筋膨胀土(ESR)的动力特性研究[J]. 工程地质学报, 2021, 29(5): 1312-1319.
LU Zhaochi, YANG Zhongnian, LIU Jiming, et al. Lowtemperature dynamic triaxial testing of frozen expansive soilrubber (ESR) mixtures[J]. Journal of Engineering Geology, 2021, 29(5): 1312-1319.
[26]关辉, 王大雁, 顾同欣, 等. 高压条件下土的冻融试验装置研制及应用[J]. 冰川冻土, 2014, 36(6): 1496-1501.
GUAN Hui, WANG Dayan, GU Tongxin, et al. Development and application of a new soil freezingthawing test apparatus for high loading conditions[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1496-1501.
[27]AKBARIMEHR D, FAKHARIAN K. Dynamic shear modulus and damping ratio of clay mixed with waste rubber using cyclic triaxial apparatus[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106435.
[28]YANG N Z, LU C Z, SHI W, et al. Effect of freezethaw cycles on the dynamic parameters of modified Na+bentonite by different cations[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(8): 313.
[29]CUI H G, CHENG Z, ZHANG L D, et al. Effect of freezethaw cycles on dynamic characteristics of undisturbed silty clay[J]. KSCE Journal of Civil Engineering, 2022, 26(9): 3831-3846.
[30]LI Y Y, LI P, ZHU S. The study on dynamic shear modulus and damping ratio of marine soils based on dynamic triaxial test[J]. Marine Georesources & Geotechnology, 2022, 40(4): 473-486.
[31]周恩全, 宗之鑫, 王琼, 等. 橡胶粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
ZHOU Enquan, ZONG Zhixin, WANG Qiong, et al. Dynamic characteristics of pipe buried in rubber-silt lightweight mixtures[J]. Rock and Soil Mechanics, 2020, 41(4): 1388-1395.
[32]LING Z X, ZHANG F, LI L Q, et al. Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze-thaw cycle under multi-stage cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 111-121.
[33]LAI J Z, D ZHAO X, TANG R, et al. Electrical conductivitybased estimation of unfrozen water content in saturated saline frozen sand[J]. Advances in Civil Engineering, 2021, 2021: 8881304.
[34]WU Zhijian, DAN Zhang, TAO Zhao, et al. An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the Qinghai-Tibet engineering corridor[J]. Transportation Geotechnics, 2019, 21: 100269.
[35]李博, 黄茂松. 掺有橡胶粉末砂土液化特性的动三轴试验研究[J]. 岩土力学, 2017, 38(5): 1343-1349.
LI Bo, HUANG Maosong. Dynamic triaxial tests on liquefaction characteristics of rubber-sand mixture[J]. Rock and Soil Mechanics, 2017, 38(5): 1343-1349.
[36]徐小东, 鲁洋, 毛航宇, 等. 废旧轮胎颗粒-砂混合物的水平循环剪切特性试验研究[J]. 郑州大学学报(工学版), 2015, 36(4): 62-66.
XU Xiaodong, LU Yang, MAO Hangyu, et al. Experimental research on horizontal cyclic shear behavior of scrap tire particles-sand mixtures[J]. Journal of Zhengzhou University (Engineering), 2015, 36(4): 6266.
[37]MA B, TENG D J, LI C H, et al. A new strength criterion for frozen soil considering pore ice content[J]. International Journal of Geomechanics, 2022, 22(7): 04022107.
[38]WANG H, WU K WANG Y, M, et al. Influence of fines content and degree of saturation on the freezing deformation characteristics of unsaturated soils[J]. Cold Regions Science and Technology, 2022, 201: 103610.
[39]PARK S, HWANG C, CHOI H, et al. Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface[J]. Geomechanics and Geoengineering, 2022, 29(3): 281-290.
[40]晏长根, 王婷, 贾海梁, 等. 冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J]. 岩石力学与工程学报, 2019, 38(6): 1252-1260.
YAN Changgen, WANG Ting, JIA Hailiang, et al. Influence of the unfrozen water content on the shear strength of unsaturated silt during freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1252-1260.
[41]雷华阳, 张文振, 冯双喜, 等. 水汽补给下砂土水分迁移规律及冻胀特性研究[J]. 岩土力学, 2022, 43(1): 1-14.
LEI Huayang, ZHANG Wenzhen, FENG Shuangxi, et al. On water migration and frost heaving characteristics of sand under water vapor recharge[J]. Rock and Soil Mechanics, 2022, 43(1): 1-14.
[42]刘振亚, 刘建坤, 李旭, 等. 毛细黏聚与冰胶结作用对非饱和粉质黏土冻结强度及变形特性的影响[J]. 岩石力学与工程学报, 2018, 37(6): 1551-1559.
LIU Zhenya, LIU Jiankun, LI Xu, et al. Effect of capillary cohesion and ice cementation on strength and deformation of unsaturated frozen silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1551-1559.