[1]程兆杰,杨忠年,王阳阳,等.有压单向冻结橡胶加筋膨胀土的动力特性研究[J].西安建筑科技大学学报(自然科学版),2024,56(06):819-828.[doi:10.15986/j.1006-7930.2024.06.004]
 CHENG Zhaojie,YANG Zhongnian,WANG Yangyang,et al.Study on dynamic characteristics of unidirectional frozen rubber-reinforced expansive soil under confining pressure[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(06):819-828.[doi:10.15986/j.1006-7930.2024.06.004]
点击复制

有压单向冻结橡胶加筋膨胀土的动力特性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年06期
页码:
819-828
栏目:
出版日期:
2024-12-28

文章信息/Info

Title:
Study on dynamic characteristics of unidirectional frozen rubber-reinforced expansive soil under confining pressure
文章编号:
1006-7930(2024)06-0819-10
作者:
程兆杰1杨忠年1王阳阳2崔郁雪1凌贤长13孙振兴1王荣昌1
(1.青岛理工大学 土木工程学院,山东 青岛 266033;2.山东省第四地质矿产勘查院,山东 潍坊 261021;3.哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150001)
Author(s):
CHENG Zhaojie1 YANG Zhongnian1 WANG Yangyang2 CUI Yuxue1 LING Xianzhang1 3 SUN Zhenxing1 WANG Rongchang1
(1.Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China; 2.Shandong Provincial No.4 Institute of Geological and Mineral Survey, Shandong Weifang 261021, China; 3.Department of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China)
关键词:
膨胀土橡胶加筋有压单向冻结橡胶粒径骨干曲线动剪切模量
Keywords:
expansive soil rubber-reinforced unidirectional freezing under pressure rubber particle size backbone curves dynamic shear modulus
分类号:
TU432
DOI:
10.15986/j.1006-7930.2024.06.004
文献标志码:
A
摘要:
废旧橡胶在岩土工程和环境地质工程中已得到广泛应用,许多学者利用橡胶进行土体的改良.然而橡胶加筋膨胀土有着更加复杂的力学性质,尤其是动力特性方面仍处于空白.因此本文利用自研温控动三轴设备,探究了有压单向冻结条件下冻结温度及橡胶粒径对橡胶加筋膨胀土动力特性的影响.结果表明:(1)有压冻结条件下,随温度的降低动剪切模量呈先增加后减小的趋势,当T=-12 ℃时,动剪切模量达到最大.(2)相同掺量下随着橡胶粒径增加,橡胶加筋膨胀土最大动剪切模量出现的负温也随之提高.粒径为0.25 mm时最大动剪切模量出现在-4 ℃,而粒径为043 mm时出现在-8 ℃.(3)橡胶粒径从2 mm降至0.18 mm,橡胶加筋膨胀土应力应变曲线的线弹性阶段范围略有增加,线弹性范围增加了0.283%.
Abstract:
Waste rubber has been widely used in geotechnical engineering and environmental geological engineering, and many scholars have used waste rubber for soil improvement. However, rubber-reinforced expansive soils have more complex mechanical properties, especially in terms of its dynamic characteristics, which remain unexplored. In this paper, the effects of freezing temperature and rubber particle size on the dynamic properties of rubber-reinforced expansive soil under confining pressure are investigated by using self-developed temperature-controlled dynamic triaxial equipment. The results show that: (1) Under confining pressure, the dynamic shear modulus tends to increase and then decrease with decreasing temperature. When T=-12 ℃, the dynamic shear modulus reaches the maximum. (2) With the increase of rubber particle size under the same mixture, the negative temperature for the maximum dynamic shear modulus of rubber-reinforced expansive soil also increases. When the particle size is 0.25 mm, the maximum dynamic shear modulus appears at -4 ℃, and when the particle size is 0.43 mm, it appears at -8 ℃. (3) When the rubber particle size decreases from 2 mm to 0.18 mm, and the range of linear elastic phase of rubber reinforced expanded soil stress-strain curve increases slightly, and the range of linear elasticity increases by 0.283%.

参考文献/References:

[1]晁夫奎. 我国废旧轮胎资源化技术应用现状及研究方向[C]//中国环境科学学会2021年科学技术年会, 北京:中国环境科学出版社, 2021.
CHAO Fukui. Application status and research direction of waste tire recycling technology in China[C]//Meeting of the Chinese Society for Environmental Sciences, Beijing:China Environment Publishing Group, 2021.
[2]MUCSI G, SZENCZI A, NAGY S. 2Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire[J]. Journal of Cleaner Production, 2018, 178: 429-440.
[3]BADAGL K, KALKAN E M, DENIZ V. End of life tyre management: Turkey case[J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 577-584.
[4]RUWONA W, DANHA G, MUZENDA E. A Review on material and energy recovery from waste tyres[J]. Procedia Manufacturing, 2019, 35: 216-222.
[5]YANG N Z, ZHANG Q, SHI W, et al. Advances in properties of rubber reinforced soil[J]. Advances in Civil Engineering, 2020, 2020: 6629757.
[6]THOMAS S B, GUPTA C R. Properties of high strength concrete containing scrap tire rubber[J]. Journal of Cleaner Production, 2016, 113: 86-92.
[7]ABBASPOUR M, AFLAKI E, NEJAD M F. Reuse of waste tire textile fibers as soil reinforcement[J]. Journal of Cleaner Production, 2019, 207: 1059-1071.
[8]XU F Y, ZHANG R H. Design of soilbagprotected slopes in expansive soils[J].Geotextiles and Geomembranes, 2021, 49(4): 1036-1045.
[9]时伟, 张亮, 杨忠年, 等. 冻融循环条件下膨胀土力学特性试验研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(4): 480-485.
SHI Wei, ZHANG Liang, YANG Zhongnian, et al. Experimental study on mechanical properties of expansive soil of artificial preparation under freeze-thaw cycle conditions[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(4): 480-485.
[10]崔郁雪, 杨忠年, 时伟, 等. 冻融循环下非饱和膨胀土一维土柱模型试验研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 393-403.
CUI Yuxue, YANG Zhongnian, SHI Wei, et al. Experimental study on one dimensional soil column model of unsaturated expansive soil under freezethaw cycles[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(3): 393-403.
[11]张莹莹, 杨忠年, 时伟, 等. 冻融循环作用下膨胀土边坡稳定性模型试验研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(2): 257-266.
ZHANG Yingying, YANG Zhongnian, SHI Wei, et al. Model test study on the stability of expansive soil slope under freeze-thaw cycle[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(2): 257-266.
[12]NARANI S S, ABBASPOUR M, HOSSEINI S, et al. Sustainable reuse of waste tire textile fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers[J]. Journal of Cleaner Production, 2020, 247: 119151.
[13]袁超, 周峙, 张家铭, 等. 环氧树脂玻璃纤维对水泥改性膨胀土的加固机理试验研究[J]. 武汉大学学报(工学版), 2021, 54(8): 709-716,724.
YUAN Chao, ZHOU Zhi, ZHANG Jiaming, et al. Experimental study on strengthening mechanism of adding epoxy resin and glass fiber to cement modified expansive soil[J]. Journal of Wuhan University (Engineering), 2021, 54(8): 709-716,724.
[14]费少刚, 王保田, 单熠博, 等. 硅灰、水泥复合改良膨胀土试验研究[J]. 水电能源科学, 2022, 40(9): 190-193.
FEI Shaogang, WANG Baotian, SHAN Yibo, et al. Experimental study on composite improvement of expansive soil with silica fume and cement[J]. Water Resources and Power, 2022, 40(9): 190-193.
[15]余梦, 张家铭, 周杨, 等. MICP技术改性膨胀土试验研究[J]. 长江科学院院报, 2021, 38(5): 103-108,122.
YU Meng, ZHANG Jiaming, ZHOU Yang, et al. Experimental study on modifying expansive soil by MICP technology[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 103-108,122.
[16]韦晨. NaCl溶液对改性陕南膨胀土强度变形特性研究[D].西安: 西安工业大学, 2020.
WEI Chen. Research on the strength and deformation characteristics of modified expansive soil in Southern Shaanxi by NaCl solution[D]. Xi′an: Xi′an Technological University, 2020.
[17]SABERIAN M, LI J, NGUYEN B, et al. Permanent deformation behaviour of pavement base and subbase containing recycle concrete aggregate, coarse and fine crumb rubber[J]. Construction and Building Materials, 2018, 178: 51-58.
[18]CHEGENIZADEH A, KERAMATIKERMAN M, SANTA G Dalla, et al. Influence of recycled tyre amendment on the mechanical behaviour of soilbentonite cutoff walls[J]. Journal of Cleaner Production, 2018, 177: 507-515.
[19]DJADOUNI H, TROUZINE H, CORREIA A Gomes, et al. 2D numerical analysis of a cantilever retaining wall backfilled with sandtire chips mixtures[J]. European Journal of Environmental and Civil Engineering, 2019, 25(6): 1119-1135.
[20]LIU L, CAI G, LIU S. Compression properties and micromechanisms of rubber sand particle mixtures considering grain breakage[J]. Construction and Building Materials, 2018, 187: 1061-1072.
[21]TASALLOTI A, CHIARO G, MURALI A, et al. Recycling of endoflife tires (ELTs) for sustainable geotechnical applications: A New Zealand perspective[J]. Applied Sciences, 2021, 11(17): 7824.
[22]SABERIAN KHOTBEHSARA M Mehrinejad, JAHANDARI S, et al. Experimental and phenomenological study of the effects of adding shredded tire chips on geotechnical properties of peat[J]. International Journal of Geotechnical Engineering, 2018, 12(4): 347-356.
[23]AKBARIMEHR D, ESLAMI A, AFLAKI E. Geotechnical behaviour of clay soil mixed with rubber waste[J]. Journal of Cleaner Production, 2020, 271: 122632.
[24]DUNHAM-FRIEL J, CARRARO H J A. Effects of compaction effort, inclusion stiffness, and rubber size on the shear strength and stiffness of expansive soil-rubber (ESR) mixtures[C]//Proceedings of the Geo-congress. Atlanta: ASCE, 2014.
[25]路钊驰, 杨忠年, 刘继明, 等. 冻结橡胶加筋膨胀土(ESR)的动力特性研究[J]. 工程地质学报, 2021, 29(5): 1312-1319.
LU Zhaochi, YANG Zhongnian, LIU Jiming, et al. Lowtemperature dynamic triaxial testing of frozen expansive soilrubber (ESR) mixtures[J]. Journal of Engineering Geology, 2021, 29(5): 1312-1319.
[26]关辉, 王大雁, 顾同欣, 等. 高压条件下土的冻融试验装置研制及应用[J]. 冰川冻土, 2014, 36(6): 1496-1501.
GUAN Hui, WANG Dayan, GU Tongxin, et al. Development and application of a new soil freezingthawing test apparatus for high loading conditions[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1496-1501.
[27]AKBARIMEHR D, FAKHARIAN K. Dynamic shear modulus and damping ratio of clay mixed with waste rubber using cyclic triaxial apparatus[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106435.
[28]YANG N Z, LU C Z, SHI W, et al. Effect of freezethaw cycles on the dynamic parameters of modified Na+bentonite by different cations[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(8): 313.
[29]CUI H G, CHENG Z, ZHANG L D, et al. Effect of freezethaw cycles on dynamic characteristics of undisturbed silty clay[J]. KSCE Journal of Civil Engineering, 2022, 26(9): 3831-3846.
[30]LI Y Y, LI P, ZHU S. The study on dynamic shear modulus and damping ratio of marine soils based on dynamic triaxial test[J]. Marine Georesources & Geotechnology, 2022, 40(4): 473-486.
[31]周恩全, 宗之鑫, 王琼, 等. 橡胶粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
ZHOU Enquan, ZONG Zhixin, WANG Qiong, et al. Dynamic characteristics of pipe buried in rubber-silt lightweight mixtures[J]. Rock and Soil Mechanics, 2020, 41(4): 1388-1395.
[32]LING Z X, ZHANG F, LI L Q, et al. Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze-thaw cycle under multi-stage cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 111-121.
[33]LAI J Z, D ZHAO X, TANG R, et al. Electrical conductivitybased estimation of unfrozen water content in saturated saline frozen sand[J]. Advances in Civil Engineering, 2021, 2021: 8881304.
[34]WU Zhijian, DAN Zhang, TAO Zhao, et al. An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the Qinghai-Tibet engineering corridor[J]. Transportation Geotechnics, 2019, 21: 100269.
[35]李博, 黄茂松. 掺有橡胶粉末砂土液化特性的动三轴试验研究[J]. 岩土力学, 2017, 38(5): 1343-1349.
LI Bo, HUANG Maosong. Dynamic triaxial tests on liquefaction characteristics of rubber-sand mixture[J]. Rock and Soil Mechanics, 2017, 38(5): 1343-1349.
[36]徐小东, 鲁洋, 毛航宇, 等. 废旧轮胎颗粒-砂混合物的水平循环剪切特性试验研究[J]. 郑州大学学报(工学版), 2015, 36(4): 62-66.
XU Xiaodong, LU Yang, MAO Hangyu, et al. Experimental research on horizontal cyclic shear behavior of scrap tire particles-sand mixtures[J]. Journal of Zhengzhou University (Engineering), 2015, 36(4): 6266.
[37]MA B, TENG D J, LI C H, et al. A new strength criterion for frozen soil considering pore ice content[J]. International Journal of Geomechanics, 2022, 22(7): 04022107.
[38]WANG H, WU K WANG Y, M, et al. Influence of fines content and degree of saturation on the freezing deformation characteristics of unsaturated soils[J]. Cold Regions Science and Technology, 2022, 201: 103610.
[39]PARK S, HWANG C, CHOI H, et al. Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface[J]. Geomechanics and Geoengineering, 2022, 29(3): 281-290.
[40]晏长根, 王婷, 贾海梁, 等. 冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J]. 岩石力学与工程学报, 2019, 38(6): 1252-1260.
YAN Changgen, WANG Ting, JIA Hailiang, et al. Influence of the unfrozen water content on the shear strength of unsaturated silt during freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1252-1260.
[41]雷华阳, 张文振, 冯双喜, 等. 水汽补给下砂土水分迁移规律及冻胀特性研究[J]. 岩土力学, 2022, 43(1): 1-14.
LEI Huayang, ZHANG Wenzhen, FENG Shuangxi, et al. On water migration and frost heaving characteristics of sand under water vapor recharge[J]. Rock and Soil Mechanics, 2022, 43(1): 1-14.
[42]刘振亚, 刘建坤, 李旭, 等. 毛细黏聚与冰胶结作用对非饱和粉质黏土冻结强度及变形特性的影响[J]. 岩石力学与工程学报, 2018, 37(6): 1551-1559.
LIU Zhenya, LIU Jiankun, LI Xu, et al. Effect of capillary cohesion and ice cementation on strength and deformation of unsaturated frozen silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1551-1559.

相似文献/References:

[1]时伟,张亮,杨忠年,等.冻融循环条件下膨胀土力学特性试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(04):480.[doi:10.15986/j.1006-7930.2019.04.003]
 SHI Wei,ZHANG Liang,YANG Zhongnian,et al.Experimental study on mechanical properties of expansive soilof artificial preparation under freeze-thaw cycle conditions[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(06):480.[doi:10.15986/j.1006-7930.2019.04.003]
[2]杨寓友,王叶娇,程 岩.裂隙性对膨胀土抗剪强度的影响研究[J].西安建筑科技大学学报(自然科学版),2024,56(04):554.[doi:10.15986/j.1006-7930.2024.04.009]
 YANG Yuyou,WANG Yejiao,CHENG Yan.Research on the influence of fracture characteristics on shear strength of expansive soil[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(06):554.[doi:10.15986/j.1006-7930.2024.04.009]

备注/Memo

备注/Memo:
收稿日期:2022-09-08修回日期:2024-11-19
基金项目:国家自然科学基金(4217071578);国家重大仪器开发项目(41627801)
第一作者:程兆杰(1998—),男,硕士生,主要从事特殊土力学方面研究.E-mail: 1441419738@qq.com
通信作者:杨忠年(1985—),男,博士,副教授,主要从事特殊土力学方面研究.E-mail: yzhnqd@qut.edu.cn
更新日期/Last Update: 2025-02-11