[1]王建超, 宋洪缘, 马光卓. 火灾后混凝土结构建筑应急加固方案优选研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(3):331-337.WANG Jianchao, SONG Hongyuan, MA Guangzhuo. Research on optimum selection of emergency reinforcement scheme for concrete structures after fire[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2022, 54(3): 331-337.
[2]KHALIQ W, KHAN H A. High temperature material properties of calcium aluminate cement concrete[J]. Construction and Building Materials, 2015 (94): 475-487.
[3]徐玉野, 吴波, 王荣辉, 等. 高温后钢筋混凝土梁剩余承载性能试验研究[J].建筑结构学报, 2013,8:20-29.
XU Yuye, WU Bo, WANG Ronghui, et al. Experimental study on residual performance of reinforced concrete beams after fire[J]. Journal of Building Structures, 2013, 8:20-29.
[4]CHOI E G, SHIN Y S, KIM H S. Structural damage evaluation of reinforced concrete beams exposed to high temperatures[J]. Journal of Fire Protection Engineering, 2013, 23 (2): 135-151.
[5]吕晓, 赵瑞丽, 舒赣平, 等. 中空夹层圆钢管超高强混凝土短柱火灾后承载性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2022,54(4):543-550.
Lü Xiao, ZHAO Ruili, SHU Ganping, et al. Experimental study on post-fire bearing performance of ultrahigh strength concrete filled double-skin circular steel tubular column[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2022,54(4):543-550.
[6]许文龙, 周戟, 刘朝峰, 等. 考虑爆裂影响的钢筋混凝土梁火灾温度场数值分析[J]. 中国安全生产科学技术, 2019, 15(9):33-38.
XU Wenlong, ZHOU Ji, LIU Chaofeng, et al. Numerical analysis on temperature field of reinforced concrete beam under fire considering spalling effect[J]. Journal of Safety Science and Technology, 2019, 15(9):33-38.
[7]HASSAN A, KHAIRALLAH F, ELSAYED H, et al. Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure[J]. Engineering Structure, 2021, 238: 112251.
[8]杨志年, 齐建全, 段开达, 等. 钢筋混凝土梁高温下抗剪性能的试验研究[J]. 工业建筑, 2020, 50(10):57-62.
YANG Zhinian, QI Jianquan, DUAN Kaida, et al. Experimental study on shear properties of RC beams under high temperature[J]. Industrial Construction, 2020, 50(10): 57-62.
[9]杨志年, 齐建全, 段开达, 等. 钢筋混凝土梁火灾下抗剪性能的试验研究[J]. 广西大学学报(自然科学版), 2019, 44(6): 1520-1530.
YANG Zhinian, QI Jianquan, DUAN Kaida, et al. Experimental research on shear behavior of reinforced concrete beams in fire[J]. Journal of Guangxi University (Nat. Sci. Ed.), 2019, 44(6): 1520-1530.
[10]杨志年, 陈明远, 王兴国, 等. 高温下钢筋混凝土框架梁抗剪性能研究[J]. 广西大学学报(自然科学版), 2016, 41(4): 1054-1060.
YANG Zhinian, CHEN Mingyuan, WANG Xingguo, et al. Research on shear behavior of reinforced concrete frame beams at high temperature[J]. Journal of Guangxi University (Nat. Sci. Ed.), 2016, 41(4): 1054-1060.
[11]PRAKASH A, SWAMINATHEN A, RAMU A, et al. Assessment of strength and durability parameters for concrete with partial replacement of coarse aggregates by iron slag and glass powder as an additive[J]. IOP Conference Series Materials Science and Engineering, 2021, 1126: 012082.
[12]KARTHIKEYAN B, KATHYAYINI R, KUMAR VA, et al. Effect of dumped iron ore tailing waste as fine aggregate with steel and basalt fibre in improving the performance of concrete[J]. Material Today Proceeding. 2021, 46: 7624-7632.
[13]陈虎, 沈卫国, 单来, 等. 国内外铁尾矿排放及综合利用状况探讨[J]. 混凝土, 2012(2): 88-92.
CHEN Hu, SHEN Weiguo, SHAN Lai, et al. Situation of discharge and comprehensive utilization of iron tailings domestic and abroad[J]. Concrete, 2012(2): 88-92.
[14]GANESH P G, HYUN J H, KIM Y Y. Effects of foundry sand as a fine aggregate in concrete production[J]. Construction and Building Materials, 2014 (70):514-521.
[15]蔡基伟, 张少波, 侯桂香, 等. 铁尾矿砂对混凝土工作性和强度的影响[J].武汉理工大学学报, 2009, 31(7): 104-107.
CAI Jiwei, ZHANG Shaobo, HOU Guixiang, et al. Effects of ferrous mill tailings as aggreagtes on workability and strength of concrete[J]. Journal of Wuhan University of Technology, 2009, 31(7): 104-107.
[16]刘文博, 姚华彦, 王静峰, 等. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020,34(S1): 268-270.
LIU WENBO, YAO HUAYAN, WANG Jingfeng, et al. Current situation of comprehensive utilization of lron tailings[J]. Materials Report, 2020, 34(S1): 268-270.
[17]管品武, 孟会英, 邝周飞. 掺尾矿砂混凝土梁受弯性能试验研究[J]. 新型建筑材料, 2016, 43(1): 18-20,29.
GUAN Pinwu, MENG Huiying, KUANG Zhoufei. Experimental research on the flexural performance of concrete beams with mine tailings sand[J]. New Building Materials, 2016, 43(1): 18-20,29.
[18]张龙生. 铁尾矿砂混凝土简支梁抗弯刚度和裂缝试验研究[D]. 成都:西南交通大学, 2015.
ZHANG Longsheng. Research on bending stiffness and crack of simplysupported beam of iron tailing concrete[D]. Chengdu: Southwest Jiaotong University, 2015.
[19]王光琦. 铁尾矿砂钢筋混凝土梁抗弯性能试验研究[D]. 唐山:华北理工大学, 2015.
WANG Guangqi. Experimental research on flexural behavior of reinforced concrete iron tailings[D]. Tangshan: Northwest University of Science and Technology, 2015.
[20]马卫华, 孟庆娟, 康洪震, 等. 铁尾矿砂混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2021, 42(S1):322-329.
MA Weihua, MENG Qingjuan, KANG Hongzhen, et al. Experimental study on shear performance of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1):322-329.
[21]李壮. 高温后铁尾矿砂混凝土力学性能试验研究[D]. 广州:华南理工大学, 2020.
LI Zhuang. Experiment study on mechanical properties of concrete with iron tailings after high temperature [D]. Guangzhou: South China University of Technology, 2020.
[22]CHEN J H, YUAN Y X, ZHU Q, et al.Hightemperature resistance of high-strength concrete with iron tailing sand[J]. Journal of Building Engineering, 2022:63(1):105544.
[23]ZHU Q, Yuan Y X, Chen J H, et al. Research on the high-temperature resistance of recycled aggregate concrete with iron tailing sand[J].Construction and Building Materials, 2022,327:126889.
[24]ZHOU Y L, YANG Z N, YOU Z G, et al. Experimental study on fire resistance of concrete beams made with iron tailings sand[J]. Buildings, 2022, 12(11):1816.
[25]中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB/T 50010—2010.(2015版)[S]. 北京:中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Developmcnt of People′s Republic of China. Code for design of concrete structures: GB/T 50010—2010. (2015)[S]. Beijing: China Architecture & Building Press, 2015.
[26]中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152—2012. [S]. 北京:中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Developmcnt of People′s Republic of China. Standard for test method of concrete structures:GB/T 50152—2012. [S]. Beijing: China Architecture & Building Press, 2012.