[1]徐佶,冯晓东,等.十二杆张拉整体结构动态分析及路径规划研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):238-248.[doi:10.15986/j.1006-7930.2024.02.010]
 XU Ji,FENG Xiaodong,XU Xian,et al.Research on dynamic analysis and path planning of twelve-bartensegrity structure[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(02):238-248.[doi:10.15986/j.1006-7930.2024.02.010]
点击复制

十二杆张拉整体结构动态分析及路径规划研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年02期
页码:
238-248
栏目:
出版日期:
2024-04-28

文章信息/Info

Title:
Research on dynamic analysis and path planning of twelve-bartensegrity structure
文章编号:
1006-7930(2024)02-0238-11
作者:
徐佶1冯晓东1 2许贤2陈耀3
(1.绍兴文理学院 土木工程学院,浙江 绍兴 312000;2.浙江大学 建筑工程学院,浙江 杭州 310058;3.东南大学 土木工程学院,江苏 南京 211189)
Author(s):
XU Ji1 FENG Xiaodong1 2 XU Xian2 CHEN Yao3
(1.School of Civil Engineering, Shaoxing University, Zhejiang Shaoxing 312000, China; 2.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058,China; 3.School of Civil Engineering, Southeast University, Nanjing 211189, China)
关键词:
张拉整体多步态引导策略步态组合路径规划
Keywords:
tensegrity multigaits guidance strategy gait combination path planning
分类号:
TU394
DOI:
10.15986/j.1006-7930.2024.02.010
文献标志码:
A
摘要:
张拉整体因其区别于传统结构的特点在土木和可动结构领域有广泛的发展前景,目前学者对于多步态或更复杂的球形张拉整体研究较少,且一些传统路径规划方法不适用于多面体张拉整体结构.因此,本文采用几何方法找寻了一种多步态的十二杆球形张拉整体结构(Snub-12)的合理构型,并用找形方法进行了验证.定义并分析了Snub12的多种基本步态和各步态形成的理论路径空间,并将其与单步态的6杆球形张拉整体结构(TR-6)进行对比,明确了两种结构运动的特点和区别.对快速搜索随机树算法进行改进并利用其产生引导路径,结合Snub12步态组合的情况,生成适合不同场景的合理运动路径,最后通过仿真分析验证了方法的可行性和有效性.分析结果表明:同等条件下,不论是路径空间中盲区占比还是独立滚动步态的翻滚步长,Snub-12均优于TR-6,更适宜开展长距离运动.基于引导策略的路径规划方法可以解决多步态张拉整体结构的路径规划问题,这丰富了球形张拉整体结构的运动理论,可以为该类球形张拉整体可动结构的实际应用提供了理论支撑.
Abstract:
The tensegrity has a broad development prospect in the field of civil engineering and movable structures because of its characteristics different from those of traditional structures. At present, scholars have less research on multi gait or more complex spherical tensegrity, and some traditional path planning methods are not suitable for polyhedral tensegrity structures. Therefore, a twelve-bar tensegrity structure is studied and a path planning method based on guiding strategy is proposed in this paper. Firstly, according to the geometric properties of the snub cube, a reasonable configuration of a twelve-bar spherical tensegrity structure (Snub-12) with multi gaits is found by using the geometric method and verified by the form finding method. The multiple basic gaits of Snub-12 movable robot and the theoretical path space formed by each gait are defined and analyzed, and the characteristics and differences between the two robots are clarified by comparing with the 6-bar spherical tensegrity structure (TR-6) with single gait. The rapidlyexploring random tree algorithm is modified to generate a guide path, and reasonable motion path suitable for different scenes are generated in consideration of the gait combination of Sunb-12. Finally, the feasibility and effectiveness of the proposed method are verified by simulation analysis. The results show that under the same conditions, Snub-12 is better than TR-6 in terms of the blind zone ratio in the path space and the rolling step length of the independent rolling gait, and is proved to be more suitable for long-distance sports. The proposed path planning method based on the guidance strategy provides a method to solve the path planning problem of multi-gait tensegrity structure, which not only enriches the motion theory of spherical tensegrity structure, but also provides theoretical support for the practical application of such spherical tensegrity movable structures.

参考文献/References:

[1]MAURIN B, MOTRO R, CEVAER F, et al. Composite profiles and membranes tensegrity panels[J]. European Journal of Environmental and Civil Engineering, 2009, 13(9): 1061-1072.

[2]SCARR G. A consideration of the elbow as a tensegrity structure[J]. International Journal of Osteopathic Medicine, 2012, 15: 53-65.
[3]RIEFFEL J, MOURET J B. Adaptive and resilient soft tensegrity robots[J]. Soft Robotics, 2018, 5(3): 318-329.
[4]CHEN M,GOYAL R, MAJJI M, et al. Design and analysis of a growable artificial gravity space habitat[J]. Aerospace Science and Technology, 2020, 106: 106147.
[5]LEE H, JANG Y, CHOE JK, et al. 3Dprinted programmable tensegrity for soft robotics[J]. Science Robotics, 2020, 5(45) :1-11.
[6]HIRAI S,IMUTA R. Dynamic simulation of sixstrut tensegrity robot rolling[C]// IEEE International Conference on Robotics & Biomimetics. Guangzhou, China: Guangzhou University Press, 2012: 198-204.
[7]SABELHAUS A P, BRUCE J,CALUWAERTS K, et al. System design and locomotion of SUPERball, an untethered tensegrity robot[C]// 2015IEEE International Conference on Robotics and Automation. Seattle, WA, USA:IEEE Xplore, 2015: 2867-2873.
[8]杜汶娟, 马书根, 李斌, 等. 可变结构体机器人形变状态找寻及运动方向预测方法[J]. 科学通报, 2013, 58(S2): 97-103.
DU Wenjuan, MA Shugen, LI Bin, et al. Deformation state searching and motion direction prediction of variable structure robot[J]. Chinese Science Bulletin, 2013, 58(S2): 97-103.
[9]杜汶娟, 马书根, 李斌,等. 可变结构体机器人滚动步态参数优化[J]. 机械工程学报, 2016, 52(17):127-136.
DU Wenjuan, MA Shugen, LI Bin, et al. Parameter optimization for rolling motion of structure variable robots[J]. Journal of Mechanical Engineering, 2016, 52(17):127-136.
[10]LUO A N, LIU H P. Analysis for feasibility of the method for bars driving the ball tensegrity robot[J]. Journal of Mechanisms and Robotics, 2017, 9(5): 1-6.
[11]ZHENG Y F , CAI H Y, WANG M J, et al. Rolling gaits of a strutactuated sixstrut spherical tensegrity[J]. International Journal of Advanced Robotic Systems, 2020, 17(5): 172988142096090.
[12]ZHENG Y, LI Y, LU Y P, et al. Robustness evaluation for rolling gaits of a sixstrut tensegrity robot[J]. International Journal of Advanced Robotic Systems, 2021, 18(1): 172988142199363.
[13]KIM K, MOON D, BIN J Y, et al. Design of a spherical tensegrity robot for dynamic locomotion[C]// 2017 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada:IEEE Xplore, 2017: 450-455.
[14]KIM K,AGOGINO A, AGOGINO A. Rolling locomotion of cable-driven soft spherical tensegrity robots.[J]. Soft Robotics, 2020, 7(3): 346-361.
[15]SHIBATA M, HIRAI S. Moving strategy of tensegrity robots with semiregular polyhedral body[C]// Emerging Trends in Mobile Robotics-International Conference on Climbing & Walking Robots & the Support Technologies for Mobile Machines. Komatsu, Shiga, Japan:IEEE Xplore, 2010: 359-366.
[16]PETERSON H. Twelve bar intelligently simulated tensegrity[D].Norrbotten: Lulea University of Technology,2018.
[17]KIM K, CHEN L H, CERA B, et al. Hopping and rolling locomotion with spherical tensegrity robots[C]// IEEE/RSJ International Conference on Intelligent Robots & Systems. Daejeon, Korea (South):IEEE Xplore, 2016: 4369-4376.
[18]CHANG J, LI B ,LIU W et al. The path planning method of tensegrity robot based on A* algorithm[C]// 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Tianjin, China:Tianjing University Press, 2018: 1502-1507.
[19]LU Y P, XU X, LUO Y Z. Path planning for rolling locomotion of polyhedral tensegrity robots[J]. Proceedings of IASS annual symposia, 2019, 60(4): 273-286.
[20]SHAH D S, BOOTH J W, BAINES R L, et al. Tensegrity robotics[J]. Soft Robotics, 2022, 9(4): 639-656.
[21]NOOSHIN H, SAMAVATI A. High precision data for snub polyhedral [C]// Proceedings of the International Association for Shell and Spatial Structures (IASS): Future Visions. Amsterdam, The Netherlands:IEEE Xplore, 2015: 1-11.
[22]ZHANG L Y, ZHU S X, CHEN X F, et al . Analytical form-finding for highly symmetric and super-stable configurations of rhombic truncated regular polyhedral tensegrities[J]. Journal of applied mechanics, 2019, 86(3): 1-11.
[23]冯晓东, 章万鹏, 罗尧治, 等. 基于方案矩阵编制策略的张拉整体结构拓扑形态研究[J]. 土木工程学报, 2021, 54(8): 75-86.
FENG Xiaodong, ZHANG Wanpeng , LUO Yaozhi, et al. Investigation on topological morphology of tensegrity structure based on scheme matrix strategy[J]. China Civil Engineering Journal, 2021, 54(8): 75-86.
[24]冯晓东, 杨伟家, 李锋, 等. 基于二次奇异值分解法的张拉整体结构找形分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4): 502-509.
FENG Xiaodong, YANG Weijia, LI Feng, et al. Form-finding analysis of tensegrity structure based on quadratic singular value decomposition method[J]. J of Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(4): 502-509.
[25]王硕,段蓉凯,廖与禾.机器人路径规划中快速扩展随机树算法的改进研究[J].西安交通大学学报, 2022, 56(7): 1-8.
WANG Shuo, DUAN Rongkai, LIAO Yuhe. Research on the improvement of the rapidly exploring random tree algorithm in robot path planning[J]. Journal of Xi′an Jiaotong University, 2022, 56(7): 1-8.
[26]CHI W, DING Z, WANG J, et al. A generalizedvoronoi diagram based efficient heuristic path planning method for RRTs in mobile robots[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4926-4937.

备注/Memo

备注/Memo:
收稿日期:2022-11-28 修回日期:2024-03-28
基金项目:国家自然科学基金项目(51908356); 国家留学基金委项目(202008330250)
第一作者:徐佶(1996—),男,硕士生,主要从事张拉整体可动结构研究. E-mail: 837400483@qq.com
通信作者:冯晓东(1987-),男,博士,副教授,硕士生导师,主要从事大跨度空间结构及智能结构研究.E-mail: fengxiaodong@usx.edu.cn
更新日期/Last Update: 2024-06-24